
Differences-in-Differences

November 10 Clair

• What is this class really about, anyway?

- What is this class really about, anyway?
 - Causality

- What is this class really about, anyway?
 - Causality
- What is our biggest problem?

- What is this class really about, anyway?
 - Causality
- What is our biggest problem?
 - Omitted variable bias

Omitted Variable Bias

- The actual cause is unobserved
 - e.g. higher wages for educated actually caused by motivation, not schooling
- Happens when people get to choose their own level of the "treatment" (broadly construed)
 - Selection bias

- Non-random program placement
 - Because of someone else's choice, "control" isn't a good counterfactual for treated

Math Review

(blackboard)

Math Review

for those of you looking at these slides later, here's what we just wrote down:

(2)
$$E(Yi \mid Ti=1) - E(Yi \mid Ti=0)$$

= $[a + b + cE(Xi \mid Ti=1) + E(ei \mid Ti=1)]$
 $- [a + 0 + cE(Xi \mid Ti=0) + E(ei \mid Ti=0)]$
= $b + c[E(Xi \mid Ti=1) - E(Xi \mid Ti=0)]$
True effect "Omitted variable/selection bias" term

What if we had data from before the program?

What if we estimated this equation using data from before the program?

(1) Yi = a + bTi + cXi + ei

Specifically, what would our estimate of b be?

What if we had data from before the program?

What if we estimated this equation using data from before the program?

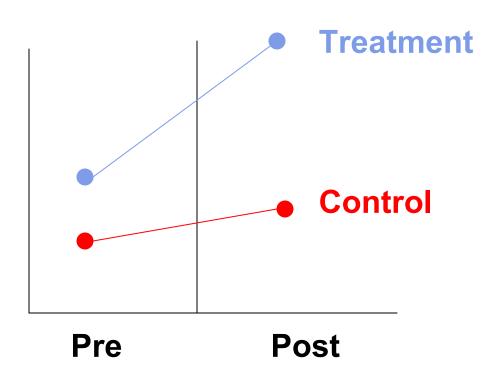
(2)
$$E(Yi | Ti=1) - E(Yi | Ti=0)$$

c [E(Xi | Ti=1) – E(Xi | Ti=0)]
"Omitted variable/selection bias" term
ALL THAT'S LEFT IS THE PROBLEMATIC TERM – HOW
COULD THIS BE HELPFUL TO US?

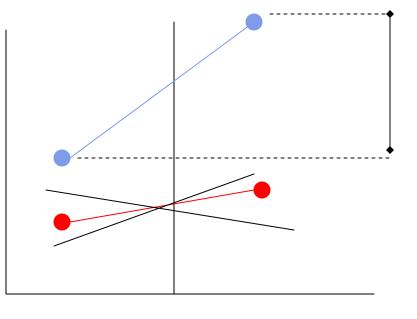
Differences-in-Differences (just what it sounds like)

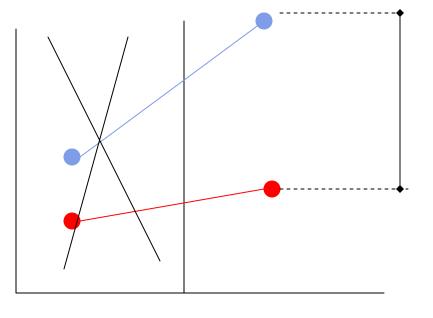
- Use two periods of data
 - add second subscript to denote time

 $= \{ E(Y_{i1} | T_{i1}=1) - E(Y_{i1} | T_{i1}=0) \}$ (difference btwn T&C, post) - $\{ E(Y_{i0} | T_{i1}=1) - E(Y_{i0} | T_{i1}=0) \}$ - (difference btwn T&C, pre)

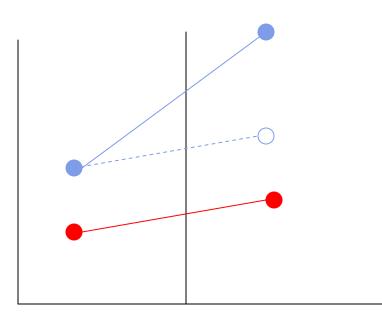

$$= b + c [E(X_{i1} | T_{i1}=1) - E(X_{i1} | T_{i1}=0)] - c [E(X_{i0} | T_{i1}=1) - E(X_{i0} | T_{i1}=0)]$$

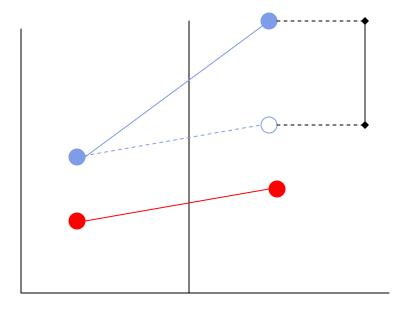
Differences-in-Differences (just what it sounds like)

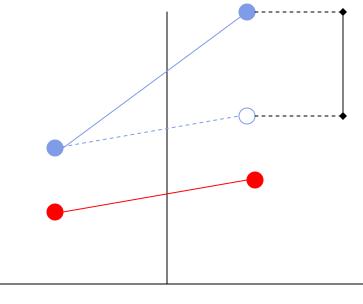

- Use two periods of data
 - add second subscript to denote time
 - $= \{ E(Y_{i1} | T_{i1}=1) E(Y_{i1} | T_{i1}=0) \}$ (difference btwn T&C, post) - $\{ E(Y_{i0} | T_{i1}=1) - E(Y_{i0} | T_{i1}=0) \}$ - (difference btwn T&C, pre)
 - $= b + \underline{c} [E(X_{i1} | T_{i1}=1) E(X_{i1} | T_{i1}=0)] \\ \underline{c} [E(X_{i0} | T_{i1}=1) E(X_{i0} | T_{i1}=0)]$
 - $= b \quad YAY!$



Effect of program using only pre- & post- data from T group (ignoring general time trend).




Effect of program using only T & C comparison from post-intervention (ignoring pre-existing differences between T & C groups).



Effect of program difference-in-difference (taking into account preexisting differences between T & C and general time trend).

Identifying Assumption

 Whatever happened to the control group over time is what would have happened to the treatment group in the absence of the program.

Effect of program difference-in-difference (taking into account preexisting differences between T & C and general time trend).

Graphing Exercise

- Which of these programs had no effect?
- Which of these programs look like they were randomly assigned?
- Which of these programs look like they were placed in the areas that needed them most?
- Which of these programs make you wonder if there was some mean reversion going on?

Uses of Diff-in-Diff

- Simple two-period, two-group comparison
 - very useful in combination with other methods

Uses of Diff-in-Diff

- Simple two-period, two-group comparison
 - very useful in combination with other methods
 - Randomization
 - Regression Discontinuity
 - Matching (propensity score)

Uses of Diff-in-Diff

- Simple two-period, two-group comparison
 - very useful in combination with other methods
 - Randomization
 - Regression Discontinuity
 - Matching (propensity score)
- Can also do much more complicated "cohort" analysis, comparing many groups over many time periods

The (Simple) Regression

 $Y_{i,t} = a + bTreat_{i,t} + cPost_{i,t} + d(Treat_{i,t}Post_{i,t}) + e_{i,t}$

- Treat_{i,t} is a binary indicator ("turns on" from 0 to 1) for being in the treatment group
- Post_{i,t} is a binary indicator for the period after treatment
- and *Treat_{i,t}Post_{i,t}* is the interaction (product)

Interpretation of a, b, c, d is "holding all else constant"

Putting Graph & Regression Together

 $Y_{i,t} = a + bTreat_{i,t} + cPost_{i,t} + d(Treat_{i,t}Post_{i,t}) + e_{i,t}$

d is the causal effect of treatment

Cohort Analysis

- When you've got richer data, it's not as easy to draw the picture or write the equations
 - cross-section (lots of individuals at one point in time)
 - time-series (one individual over lots of time)
 - repeated cross-section (lots of individuals over several times)
 - ★ panel (lots of individuals, multiple times for each) ★
- Basically, control for each time period and each "group" (fixed effects) – the coefficient on the treatment dummy is the effect you're trying to estimate

DiD Data Requirements

- Either repeated cross-section or panel
- Treatment can't happen for everyone at the same time
- If you believe the identifying assumption, then you can analyze policies ex post
 - Let's us tackle really big questions that we're unlikely to be able to randomize

Malaria Eradication in the Americas (Bleakley 2007)

Question: What is the effect of malaria on economic development?

5 types of correlations (remember?):

Malaria Eradication in the Americas (Bleakley 2007)

Question: What is the effect of malaria on economic development?

5 types of correlations (remember?):

- Causation
- Reverse causation
- Simultaneity
- Omitted variables
- Spurious correlation

Assumption OK?

- Eradication campaigns not determined by affected regions
- Campaigns made major progress over a short time span (10 years)
- Cross-regional variation in how bad malaria was (ecological differences)

Malaria Eradication in the Americas (Bleakley 2007)

- Treated vs Control those who were (were not) children in malaria endemic regions
- Pre vs Post DDT spraying

"In both absolute terms and relative to the comparison group of non-malarious areas, cohorts born after eradication had higher income and literacy as adults than the preceding generations."

Robustness Checks

- If possible, use data on multiple pre-program periods to show that difference between treated & control is stable
 - Not necessary for trends to be parallel, just to know function for each
- If possible, use data on multiple post-program periods to show that unusual difference between treated & control occurs only concurrent with program
- Alternatively, use data on multiple indicators to show that response to program is only manifest for those we expect it to be (e.g. the diff-in-diff estimate of the impact of ITN distribution on diarrhea should be zero)