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1 Introduction : Background and Motivation

A Fourier series can be understood as the decomposition of a periodic function into its pro-
jections onto an orthonormal basis. More precisely, consider the vector space of continuous
functions from [−π, π] to R, on which we define the inner product between two functions f
and g as

〈f, g〉 =
∫ π

−π
f(x)g(x)dx.

Then the Fourier series of a continuous, 2π-periodic function f : [π, π] → R is

a0 +
∑

(an cos(nt) + bn sin(nt))

where the coefficients (an) and (bn) are given by

a0 = 1
2π

∫ π
−π f(x)dx

an = 1
π

∫ π
−π f(x) cos(nx)dx for n > 0

bn = 1
π

∫ π
−π f(x) sin(nx)dx.

These coefficients are the projections of f onto the orthonormal basis functions

1√
2π

,
cos(mx)√

π
,
sin(nx)√

π
m, n ∈ Z.
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Another way of expressing the the Fourier series of f is

∑
n

f̂(n)einx

where the complex coefficients f̂(n) are given by

f̂(n) =
1
2π

∫ π

−π
f(x)e−inxdx.

This complex exponential representation is equivalent to the trigonometric representation,
and is a bit more compact. We can return to the trigonometric representation by taking
the real and imaginary parts of this exponential representation. Also, by using DeMoivre’s
theorem, and defining f̂(n) = an−ibn

2 and f̂(−n) = an+ibn
2 , we can change the trigonometric

representation into the exponential one. In the following pages, we will use this exponential
representation for reasons of simplicity.

Thus Fourier series allow us to represent a perhaps complicated periodic function as simply
a linear combination of projections onto a basis. Such a compact representation has proven
exceedingly useful in the analysis of many real-world systems involving periodic phenomena,
such as waves propagating on a string, electrical circuits with oscillating current sources,
and heat diffusion on a metal ring – an application we will later examine in detail. More
generally, Fourier series usually arise in the ubiquitous context of boundary value problems,
making them a fundamental tool among mathematicians, scientists, and engineers.

However, there is a caveat. Except in degenerate cases, a Fourier series is usually not an
exact replica of its original function. Thus, a natural question is: exactly how does the series
approximate the function? If we say that the Fourier series converges to the function, then
precisely in what sense does the series converge? And under what conditions? Incidentally,
such questions of Fourier series convergence are largely responsible for seeding the subject
of real analysis.

One notion of convergence between functions is L2-convergence, or convergence in the mean.
For a 2π-periodic function f , we have L2 convergence of the Fourier series if

lim
N→∞

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

f̂(n)einx

∣∣∣∣∣

2

dx = 0.

One of the first results regarding Fourier series convergence is that if f is square-integrable
(that is, if

∫ 2π
0 |f(x)|2dx < ∞), then its Fourier series L2-converges to f . This is a nice

result, but it leaves more to be desired. L2 convergence only says that over the interval
[−π, π], the average deviation between f and its Fourier series must tend to zero. However,
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for a fixed x in [−π, π], there are no guarantees on the difference between f(x) and the
series approximation at x.

A stronger – and quite natural – sense of convergence is pointwise convergence, in which
we demand that at each point x ∈ [−π, π], the series approximation converges to f(x).
Jordan’s Pointwise Convergence Theorem then states that if f is sectionally continuous and
x0 is such that the one-sided derivatives f ′(x+

0 ) and f ′(x−0 ) both exist, then the Fourier
series

∑
n f̂(n)einx0 converges to f(x0). This theorem is often useful for proving pointwise

convergence, and its conditions often hold. However, sometimes pointwise convergence can
be an inappropriate notion of convergence. A canonical example is the sequence of functions
defined by gn(x) : x → xn for x ∈ [0, 1]. Then (gn) converges pointwise to a function h
that equals 0 for x ∈ [0, 1), but equals 1 for x = 1. Thus although (gn) consists only of
continuous functions, oddly the limit function is discontinuous.

To avoid such problems, we desire the even stronger notion of uniform convergence, such
that the rate at which the series converges is identical for all points in [−π, π]. By adopting
the metric

d(f, g) = sup{|f(x)− g(x)| : t ∈ [−π, π]}

over the space of continuous functions from [−π, π] to R, we can force convergence to imply
uniform convergence, simply by definition. This metric space is denoted by C([−π, π],R).
It can also be proven that C([−π, π],R) is a vector space, and thus the concept of series is
well-defined.

We are now primed to appreciate Fejér’s remarkable theorem.

Fejér’s Theorem: Let f : [−π, π] → R be a continuous function with f(−π) = f(π). Then
the Fourier series of f (C,1)-converges to f in C([−π, π],R), where C([−π, π],R) is the
metric space of continuous functions from [−π, π] to R.

Without imposing any additional conditions on f aside from being continuous and periodic,
Fejér’s theorem shows that Fourier series can still achieve uniform convergence, granted that
we instead consider the arithmetic means of partial Fourier sums.

2 Proof

2.1 Fejér’s Kernel

Before proceeding further, we first prove some properties of Fejér’s kernel – a trigonometric
polynomial that often appears in Fourier analysis. These properties will be useful in the
proof of Fejér’s theorem.
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Fejér’s kernel can be expressed in either of the following two equivalent ways:

Fn(x) =
1

n + 1
sin2[(n + 1)x/2]

sin2[x/2]
(1)

Fn(x) =
1

n + 1

n∑

k=0

Dk(x) (2)

where Dk(x) is the Dirichlet kernel Dk(x) =
∑k

m=−k eimx. Depending on the circumstances,
one form of Fejér’s kernel can lend more clarity than the other. Conversion between the two
forms is just a tedious exercise in manipulating trigonometric identities. To avoid detracting
from the flow of our presentation, we will not present the proof of this conversion here.
However, the meticulous reader is welcome to read the proof in the Appendix section.

Lemma: The Fejér kernel has the following properties:

i
1
2π

∫ π

−π
Fn(x)dx = 1 (3)

ii Fn(x) ≥ 0 (4)

iii For each fixed δ > 0, lim
n→∞

∫

δ≤|x|≤π
Fn(x)dx = 0 (5)

Proofs:

i 1
2π

∫ π
−π Fn(x)dx = 1

We appeal to the second form of Fejér’s kernel given by (2). Substituting the definition
of Dirichlet’s kernel yields:

Fn(x) =
1

n + 1

n∑

k=0

k∑

m=−k

eimx.

Integrating Fn(x) then yields

1
2π

∫ π

−π
Fn(x)dx =

1
2π

∫ π

−π

[
1

n + 1

n∑

k=0

k∑

m=−k

eimx

]
dx

=
1

n + 1

n∑

k=0

k∑

m=−k

[
1
2π

∫ π

−π
eimxdx

]
.
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When m is nonzero,
∫ π
−π eimx = 0. But when m = 0, 1

2π

∫ π
−π eimx = 1. Thus,

1
2π

∫ π

−π
Fn(x) =

1
n + 1

n∑

k=0

1 = 1. ¤

ii Fn(x) ≥ 0

The non-negativity of the Fejér kernel follows immediately from the first form of the
Fejér kernel (1). ¤

iii For each fixed δ > 0, limn→∞
∫
δ≤|x|≤π Fn(x)dx = 0.

We again use the Fejér kernel’s first form. For δ ≤ |t| ≤ π we have 1
sin2 x/2

≤ 1
sin2 δ/2

.
Thus

0 ≤ Fn(x) ≤ 1
n + 1

1
sin2 δ/2

, δ ≤ |x| ≤ π.

This uniformly converges to 0 as n →∞. ¤

2.2 Fejér’s Theorem

To discuss Cesaro convergence of Fourier series, we introduce notation for both the partial
Fourier sums, and the arithmetic means of those partial sums. Denote the nth partial sum
of the Fourier series by sn, and denote the corresponding nth Cesaro sum by σn.

sn(x) =
n∑

k=−n

f̂(k)eikx (6)

σn(x) =
1

n + 1

n∑

k=0

sk(x) (7)

Now we aim to rewrite these expressions in terms of the Fejér kernel. Substituting the
integral form of f̂(k) into (6) yields

sn(x) =
n∑

k=−n

f̂(k)eikx =
n∑

k=−n

[
1
2π

∫ π

−π
f(t)e−iktdt

]
eikx

=
1
2π

∫ π

−π
f(t)

n∑

k=−n

eik(x−t)dt
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=
1
2π

∫ π

−π
f(t)Dn(x− t)dt.

Applying a change of variables then produces

sn(x) =
1
2π

∫ π

−π
f(x− t)Dn(t)dt. (8)

With (8) in hand, we rewrite the Cesaro sum σn as

σn(x) =
1

n + 1

n∑

k=0

sk(x) =
1

n + 1

n∑

k=0

[
1
2π

∫ π

−π
f(x− t)Dk(t)dt

]

=
1
2π

∫ π

−π
f(x− t)

[
1

n + 1

n∑

k=0

Dk(t)

]
dt

=
1
2π

∫ π

−π
f(x− t)Fn(t)dt

By Property i of the Lemma, we can then write

σn(x)− f(x) =
1
2π

∫ π

−π
(f(x− t)− f(x))Fn(t)dt.

Applying the triangle inequality for integrals yields

|σn(x)− f(x)| ≤ 1
2π

∫ π

−π
|(f(x− t)− f(x))Fn(t)| dt.

By the non-negativity of the Fejér kernel (Lemma ii), this reduces to

|σn(x)− f(x)| ≤ 1
2π

∫ π

−π
|f(x− t)− f(x)|Fn(t)dt.

Continuous functions on [−π, π] are uniformly continuous. That is, given ε > 0, there exists
a δ > 0 such that |x− y| ≤ δ implies |f(x)− f(y)| ≤ ε. We now break our integral into two
integrals, with the limits of integration divided about δ and −δ.

|σn(x)− f(x)| =
(

1
2π

∫

|t|≤δ
|f(x− t)− f(x)|Fn(t)dt

)
+

(
1
2π

∫

δ≤|t|≤π
|f(x− t)− f(x)|Fn(t)dt

)
.
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From the uniform continuity of f , the first integral is bounded above by

1
2π

∫

|t|≤δ
εFn(t)dt ≤ 1

2π

∫ π

−π
εFn(t)dt = ε

where the last equality holds by Lemma i.

If we let M = sup−π≤t≤π |f(t)|, then the second integral is bounded above by

1
2π

∫

δ≤|t|≤π
2MFn(t)dtFn(t)dt =

M

π

∫

δ≤|t|≤π
Fn(t)dt.

Finally by Lemma iii, there exists an N ∈ N such that for all n ≥ N ,
∫
δ≤|t|≤π Fn(t)dt ≤ ε.

Conclusively, for all n ≥ N , |f(x)− σn(x)| ≤ ε + ε = 2ε. This completes the proof. ¤

3 Application: Heat Diffusion on a Circle

In this section, we examine one of the very first applications of Fourier series. It dates from
Fourier’s seminal 1807 paper “The Analytical Theory of Heat”, in which Fourier series are
used to solve the practical problem of heat flow in various metallic solids.

Imagine a wire of unit length that is twisted into a circle. Suppose this circle is heated by
some continuous initial temperature distribution f . As time passes, the heat redistributes
itself about the circle, moving from hotter areas to colder areas. After a long time, we would
expect the heat to be evenly distributed over the circle. But in the interim, we would like
an expression for the temperature as a function of both space and time.

It is convenient to think of this circle as the unit interval [0, 1] wrapped around on itself.
We then denote the temperature function by u(x, t), where x is the spatial variable lying
on the real line modulo 1, and t is time. The initial condition is then u(x, 0) = f(x). Note
that the circularity forces u(x, t) to be periodic in x with period 1, for any fixed t. Thus
u(x, t) has some Fourier series expansion

u(x, t) =
∞∑

n=−∞
cn(t)e2πinx

where the Fourier coefficients are given by

cn(t) =
∫ 1

0
e−2πinxu(x, t)dx.
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At this point we recall Newton’s famous heat conduction equation, which approximates the
conduction of heat in solids. The equation is α2uxx = ut, where α2 is the thermal diffusivity
constant; to simplify matters, we will let α2 = 1

2 . With the intent of applying this equation,
we first differentiate cn(t) with respect to t

c′n(t) =
∫ 1

0
ut(x, t)e−2πinxdx

and then substitute the heat conduction equation

c′n(t) =
∫ 1

0

1
2
uxx(x, t)e−2πinxdx.

Now we would like to remove the spatial derivatives from u. To do this we integrate by
parts twice, using the facts that e2πin = 1, and u(0, t) = u(1, t) by periodicity of u. After
integrating by parts we have

c′n(t) =
∫ 1

0

1
2
u(x, t)

d2

dx2

[
e−2πinx

]
dx

=
∫ 1

0

1
2
u(x, t)(−4π2n2)e−2πinxdx

= (−2π2n2)
∫ 1

0
u(x, t)e−2πinxdx

= (−2π2n2)cn(t)

To our approval, we discover that cn(t) obeys a canonical ordinary differential equation! Its
solution is of course

cn(t) = cn(0)e−2π2n2t.

Expressing cn(0) in integral form shows that cn(0) is simply the nth Fourier coefficient of
the initial distribution function f :

cn(0) =
∫ 1

0
u(x, 0)e−2πinxdx =

∫ 1

0
f(x)e−2πinxdx.

Denoting this coefficient by f̂(n), we can elegantly write the general solution of the heat
equation as
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u(x, t) =
∞∑

n=−∞
f̂(n)e−2π2n2te2πinx.

4 Appendix: Equivalent Forms of Fejér’s Kernel

Recall that Fejér’s kernel can be expressed as either

Fn(x) =
1

n + 1
sin2[(n + 1)x/2]

sin2[x/2]

or

Fn(x) =
1

n + 1

n∑

k=0

Dk(x)

where Dk(x) is the Dirichlet kernel Dk(x) =
∑k

m=−k eimx. In this section we prove the
equivalence of these expressions. Namely, we will manipulate the second form of Fejér’s
kernel listed above into the first form.

We start with the following Lemma:

Lemma:

1 + 2
n∑

k=1

cos(kx) =
sin[(n + 1

2)x)]
sin(x

2 )
.

Proof: Recall the trigonometric product identity 2 cos(u) sin(v) = sin(u + v)− sin(u− v).
Setting u = kx and v = x

2 , we then have

2 cos (kx) =
sin

[(
k + 1

2

)
x
]− sin

((
k − 1

2

)
x
)

sin
[

x
2

]

By substituting the above expression for 2 cos (kx), we then have a telescoping sum

2
n∑

k=1

cos(kx) =
n∑

k=1

sin
[(

k + 1
2

)
x
]− sin

[(
k − 1

2

)
x
]

sin
(

x
2

)

=
sin

[(
n + 1

2

)
x
]− sin

(
x
2

)

sin
(

x
2

)
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=
sin[(n + 1

2)x)]
sin(x

2 )
− 1

which yields the result. ¤

Using this Lemma and De Moivre’s formula, we can now rewrite Dirichlet’s kernel as

Dk(x) =
n∑

k=−n

eikx = 1 + 2
n∑

k=1

cos(kx) =
sin[(n + 1

2)x)]
sin(x

2 )
.

Substituting this into the second form of Fejér’s kernel yields

(n + 1)Fn(x) =
n∑

k=0

Dk(x)

=
n∑

k=0

sin[(n + 1
2)x)]

sin(x
2 )

=
1

sin(x/2)
Im

{
n∑

k=0

ei(k+1/2)x

}

=
1

sin(x/2)
Im

{
eix/2 ei(n+1)x − 1

eix − 1

}

=
1

sin(x/2)
Im

{
ei(n+1)x − 1

eix/2 − e−ix/2

}

=
1− cos[(n + 1)x]

2 sin2(x/2)

=
sin2[(n + 1)x/2]

sin2[x/2]
. ¤
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