Author	Global change factor examined	Experimental system	Effect on soil nitrogen	Proposed mechanisms
Niklaus et al., 1998	Elevated CO ₂	Annual calcareous grassland (FACE)	CO ₂ increased microbial N pools, decreased plant-available N, had no effect on plant N pools	Increased N mineralization or N retention
Hungate et al., 1999	Elevated CO ₂	Florida scrub oak (chambers)	CO ₂ increased N fixation, decreased leaching and N mineralization, increased immobilization	Stimulation of microbial and plant N demand; altered C cycling
Hungate et al., 1997	Elevated CO ₂	California annual grassland (chambers)	CO ₂ increased gross N mineralization and plant N uptake	Increase in soil moisture
Arnone, 1997	Elevated CO ₂	Alpine grassland (chambers)	CO2 had no effect on plant N uptake or soil N availability	No change in soil moisture
Hu et al., 2001	Elevated CO ₂	California annual grassland (chambers)	CO ₂ increased plant N uptake and decreased soil N availability (especially in later growing season)	Plant demand for N increased; plants outcompeted microbes
Williams et al., 2001	Elevated CO ₂	Kansas prairie (chambers)	CO ₂ had no effect on N transformations, but increased microbial N demand	Greater amounts of C and water available to microbes
Gloser et al., 2000	Elevated CO ₂ and N deposition	Lolium perenne monoculture (FACE)	CO2 had no effect on N mineralization, N loss or plant N uptake	No change in soil moisture; downregulation of NO ₃ ⁻ uptake by plants
Hagedorn et al., 2002	Elevated CO ₂ and N deposition	Spruce and beech forest (chambers)	CO ₂ increased NH ₄ ⁺ in calcareous sand, decreased NH ₄ ⁺ in acidic loam; decreased NO ₃ ⁻ in both soils	Microbial immobilization of N; changes in root uptake kinetics
Gorrisen & Cotrufo, 1999	Elevated CO ₂ and N deposition	Three grass species in pots (greenhouse)	CO ₂ decreased plant N content; did not affect microbial biomass N or N mineralization	Microbes did not successfully compete with plants for N
Hungate et al., 1997	Elevated CO ₂ and N deposition	California annual grassland (chambers)	CO ₂ increased N immobilization, decreased nitrification; no effect on gross mineralization	Increased root production and C:N ratio stimulate microbes

Table A1. Summary of previous research on global change and nitrogen availability.

Appendix 1: Research on global change and soil nutrients

Table A1.	(continued)
-----------	-------------

Diaz et al., 1993	Elevated CO ₂ and N deposition	Tall herb community (greenhouse)	CO2 increased soil microbial N at both low and high N availability; plants showed N deficiency	Microbes more active; competed successfully with plants for N
Zak et al., 1993	Elevated CO ₂ and N deposition	Populus tremuloides (chambers)	CO ₂ increased net N mineralization and total plant biomass; total N unaffected	Below-ground C inputs stimulated microbial turnover rates
Zak et al., 2000 <i>b</i>	Elevated CO ₂ and N deposition	Populus tremuloides (chambers)	CO ₂ had no effect on N mineralization, immobilization, or nitrification	Root exudates made up an insignificant fraction of soil carbon
Martin- Olmedo et al., 2002	Elevated CO ₂ and N deposition	Hordeum disticum (chambers)	CO ₂ increased total N taken up by plants, increased microbial biomass; total and inorganic N in soil unaffected; denitrification unaffected	Enhanced nutrient release from soil organic matter (microbial processes speeded up)
Mikan et al., 2000	Elevated CO ₂ and organic N	Aspen monoculture (chambers)	CO ₂ increased plant N uptake; gross N mineralization not affected	Both microbial immobilization and microbial turnover increased, canceling out
Niklaus et al., 2001	Elevated CO ₂ and plant species diversity	Annual calcareous grassland (FACE)	CO ₂ and high species diversity both reduced soil nitrate	Decrease in nitrification rates, increase in soil moisture leading to more effective N uptake by plants
Reich et al., 2001	Elevated CO ₂ , N deposition, plant species diversity	Minnesota prairie (FACE)	CO ₂ had no effect on N mineralization; increased plant N content and decreased N min. under increased sp. diversity	Niche complimentarity and positive interspecies interactions
Thayer et al., 2002	Elevated CO ₂ , water, and N	California annual grassland (chambers)	Water and CO ₂ increased community N pools; nitrogen addition decreased community N pools	Changes in plant biomass and species composition
Loiseau & Soussana, 2000	Elevated CO ₂ , temperature, and N deposition	Lolium perenne monoculture (chambers)	CO ₂ had no effect on total soil N, but increased N immobilization late in season; temperature helped to reverse this effect	Microbes competed successfully with plants for N; warming increased microbial turnover
Tscherko et al., 2001	Elevated T	Forbs and grasses (greenhouse)	Temperature had no effect on microbial biomass N or N mineralization	Undeveloped soil and root profile, excessive water content