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Abstract

QuickPass machines are a system of regulating popular rides at an

amusement park designed to reduce the amount of time that is spent

waiting in line. We are asked to develop a scheme to administer the

QuickPass system at a given amusement park in order to increase the

overall enjoyment experienced by visitors. We are also required to have our

system avoid certain anomalies reported by previous users of the system.

In this paper, we derive a theoretical model for analyzing the enjoyment

of visitors at a theme park based on principles of economic equilibrium

and game theory.

Viewing the problem from a game theoretical perspective, we are able

to represent enjoyment as a function of two factors: the total time spent

waiting in line and the delay incurred by having to wait for a QuickPass

return time to arrive. We perform a theoretical test of this system and

find it to be robust.

We use our model to evaluate three classes of schemes:

• Schemes that vary the time interval at which a QuickPass machine

asks a visitor to return to the ride,

• Schemes that vary the rates at which people are admitted onto rides

from the regular line and the line designated for QuickPass ticket

holders,

• And arbitrary schemes that vary the delay time of a QuickPass ticket

holder’s return to the ride. The model thus allows us to determine

which system meets our criteria of maximal enjoyment by comparing

the different values of enjoyment a set of schemes yield.

We derive theoretical mathematical proofs to show that the case in which

the non-QuickPass line has been eliminated is the best possible system

with respect to visitor enjoyment.

1 Goals

We have two objectives in developing a system to assess the quality of a Quick-
Pass scheme:

• To measure the total enjoyment experienced by visitors to the amusement
park under the scheme.
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• To ensure that the scheme avoids the anomalies reported by users of the
current system.

2 Terminology

The following are some key words and concepts that we rely heavily upon in
the paper.

Scheme: A scheme is a method of administering the QuickPass system for
rides at a park, including the method for assigning return times to ticket hold-
ers.
Lines: There are three different types of lines:

• Regular line: The regular line for a ride, Pr, is a queue of visitors that
operates independently of the QuickPass system.

• Virtual QuickPass line: The virtual QuickPass line, Q, is a virtual
queue counting the visitors with outstanding QuickPass tickets in the order
that they pulled the tickets.

• Physical QuickPass line: The physical QuickPass line, Pq, is a physical
queue in which a visitor stands from the time that they turn in their
QuickPass ticket upon returning to a ride until the time that they exit at
the end of the ride.

Rate: The rate of a ride is the average number of people per minute who can
take that ride.

Wait: The wait, denoted by W , is the length of time between the initial entry
at the beginning of a line to the final exit at the end of ride.

Park Attendance: The park attendance , denoted At, is the number of
people in the amusement park at any time t.

3 Assumptions

• Every visitor in the park acts independently to maximize his or

her own enjoyment. Regardless of the additional benefit that might be
gained, the large number of visitors makes cooperation impossible.

• At the amusement park there are two types of activities:

(A) Popular rides, which are more desirable than other activities and
implement the QuickPass system in order to alleviate the massive lines
and physical wait times.
(B) Alternative attractions,which include unmetered rides and free
time within the park. These are less desirable than popular rides and do
not have QuickPass machines.
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• Visitors should always take a QuickPass ticket. This is a conse-
quence of our first assumption that each visitor acts to maximize their
enjoyment; as the visitor is not obligated to arrive during the QuickPass
window, the action of taking a QuickPass ticket can only increase their
range of available options and can only serve to potentially increase their
enjoyment.

• Visitors get a fixed level of benefit per minute by pursuing al-

ternative attractions. Because the number of alternative attractions
is large and because many of them naturally require little or no waiting
time, visitors will be able to accrue the same amount of benefit from this
collection of attractions at all times.

• The motion of lines can be approximated as continuous. The
motion of lines is continuous in the limit as ride duration becomes very
small. We will show later in this paper that the effects of this assumption
on the results of our scheme evaluations are minimal.

4 Model Development

4.1 Overview of Approach

¿From a game-theoretical perspective, the QuickPass system is essentially a
regulatory mechanism used to reduce inefficiencies caused by lack of cooperation.
In this section we work to understand the behavior of visitors at the park in an
equilibrium in order to quantify the enjoyment they experience under different
QuickPass schemes. We first build the model for a baseline case that does
not include a QuickPass system; we then expand the model to account for the
presence of a QuickPass line.

4.2 Equilibrium Theory

Equilibrium theory states that an unregulated economic system will naturally
gravitate towards the state where the cost of a service is directly proportional
to the amount of utility that one experiences from it. We apply this theory to
the problem by representing the amusement park as an economic system with
wait time as cost and enjoyment as utility.

4.3 Need Only Consider One Popular Ride (Part 1)

We treat only a simple case where there is one ride with a set utility gain. This
simplification can be made because generalizations to a park with n different
rides will exhibit the same behavior in the equilibrium model as one ride with
an arbitrary utility.
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4.4 An Unregulated Amusement Park

In order to evaluate how to quantify enjoyment at a theme park, we examine
the behavior of persons at an amusement park without a QuickPass system in
place.

4.4.1 Determination of Value Based on Choice

When assessing their next action in the unregulated amusement park, visitors
have two choices:

• Choice A: Wait in line and eventually take a popular ride.

• Choice B: Do not wait in line and instead enjoy alternative attractions.

An illustration of the decision between a 
popular ride and alternative attractions.

A:

B:

b

W(P )

m
Choice A yields enjoyment of             enjoyment/ minute

Choice B yields enjoyment of    b   enjoyment/ minute

r

m

W(P )r

There will be a certain benefit obtained by following each of these strategies.
The benefit per minute from Choice A will equal the benefit obtained by riding
a popular ride, denoted here by m, divided by the time it takes to wait for that
ride, i.e.

enjoyment

minute
=

m

W (Pr)
.

The enjoyment per minute of choice B is fixed at some value b. Visitors will
choose whichever option yields a higher utility, so they will choose the option
that provides the highest benefit per minute.

Comparing m
W (Pr) and b, as long as b and m are positive numbers we will

find that there is a threshold value for W (Pr) such that the two values are equal.
Call this value maxwait. Thus, we get the equality:

m

maxwait

= b

We find that for W (Pr) < maxwait it is the case that the person will choose
Choice A. And correspondingly, for WPr ≥ maxwait the person will choose
Choice B. Hence, maxwait is the maximum amount of time someone is willing
to wait to ride a popular ride.

Before continuing it is important to define the number associated to the
maximum wait time, the line capacity: capr = maxwait ·rater.
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4.4.2 Calculating Enjoyment in the Unregulated Amusement Park:

The Baseline Case

Each person in the amusement park will face the same choice. Thus, we may
define the average unregulated enjoyment piecewise to be:

E0(At) =

{ (

m·rater

At

)

, whenAt < capr

b , whenAt ≥ capr

}

(1)
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Understanding CAPr and MAXwait
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m/wPr 

Real level of enjoyment
experienced            

4.5 Need Only Consider One Popular Ride (Part 2)

Now that we have the proper notation defined, we can easily see why this is
true. Consider rides 1, · · · , n each with their own enjoyment m1 · · ·mn. These
rides will fall into an equilibrium with wait times W (Pr1

), · · · , W (Prn
) with the

property that:

m1

W (Pr1
) = · · · = mn

W (Prn )

Therefore, these rides act as one.

4.6 Calculating Enjoyment in a Regular QuickPass-Integrated
System

Having established a method for quantifying enjoyment in a simple system, we
now use a similar approach to quantify enjoyment in the more complex system
in which QuickPass lines coexist with regular lines. This quantification will
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provide us with a criterion by which we may evaluate competing QuickPass
schemes. In doing this, we use the same general assumptions as before. We
note first that:

4.6.1 Different Lines, Different Rates

In a regular QuickPass-integrated system there are two ways that a visitor may
board a popular ride. They may wait in the regular line or they may take a
QuickPass ticket and return at a later time to wait in the physical QuickPass
line. As entry from these lines is most likely overseen by human attendants, it
is unreasonable to expect that these rates will be anything but fixed throughout
the day. These rates can be expressed formally by rater for the regular line and
rateq for the QuickPass line. So as to ensure that the ride runs full each time,
these rates have the property:

rater + rateq = rate

.

Line P rLine P q

The rates at which A-ride lines move.

RIDE

The ride accepts customers at rate.

Line P  moves forward at rate  .

Line P  moves forward at rate  .r r

q q

rate

rateq
rater

4.6.2 The Virtual QuickPass Wait Time

W (Q) is the total time that a QuickPass ticket holder must wait from the time
s/he pulls the ticket to the time s/he boards the ride. W (Pq) is the amount
of time that the ticket holder must wait in the physical QuickPass line. The
length of time that the QuickPass holder spends before getting in the physical
QuickPass line is essentially free time and will be denoted by F . The following
important relationships are thus implied:

W (Q) = W (Pq) + F

and

W (Q) =
At

rateq

+ ε,
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where ε is an error term that comes from uncertainties in a variety of factors
that are discussed in more detail in Section 8.1.

4.6.3 Enjoyment in the Regular QuickPass-Integrated System

The enjoyment a visitor accrues from his/her experience in the park comes from
the enjoyment obtained using the QuickPass system to take rides on popular
rides and the enjoyment obtained during the time not spent in the physical
QuickPass line. Because they may only hold one QuickPass ticket, during their
free time visitors face the same limited Baseline choice as before:

• Choice A: Wait in line and eventually take an A-ride

• Choice B: Do not wait in line and enjoy alternative B-level attractions.

We demonstrated in the Baseline Case that this pair of choices yields an enjoy-
ment function of E0 defined earlier. The only difference in this case is that the
argument of E0 is the number of people with free time, NF = F · rateq instead
of the full park attendance.

Thus we find that in the time from when a visitor first pulls a ticket to the
time they can pull another, they accrue enjoyment from two sources. The first
comes from the benefit accrued from the popular ride itself as a result of the
QuickPass system:

Enjoymentpart1 =
m

W (Q)

The second comes from the benefit accrued during free time:

Enjoymentpart2 =
F · E0(NF )

W (Q)

Adding these two sources of enjoyment together yields the definition for total
enjoyment per minute of the regular QuickPass-integrated system:

Eq(At) =
F · E0(NF ) + m

W (Q)
(2)

4.6.4 The Special Case

It should be noted that q = 1 represents a special case when there are no regular
lines and so, when not waiting in the physical QuickPass line, one has only the
option of taking type B rides. This special case is important as later on in the
paper (Theorem 1) we prove that it yields maximum enjoyment with respect to
the q variable.
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5 Schemes

We have now developed criteria for evaluating the quality of a scheme in terms
of the enjoyment experienced by visitors to the park. We now consider three
general classes of schemes that can be generated and tested within this model.
In Section 6, we will evaluate each of these schemes according to the framework
we have developed above.

At time t0, a visitor who recieves a QuickPass ticket will be asked to return
within the time interval [t0 + h, t0 + h + l] for some h, the window delay time,
and some l, the window length.

5.1 Window Length

In creating an effective QuickPass ticket-issuing scheme it is essential to consider
the significance of the length of the window of time allotted to the QuickPass
ticket holder within which they may return to the ride. We may try to vary the
window length, l, and view any changes in enjoyment.

5.2 Window Starting Time and Arbitrary Schemes

Just as we may vary window length, we may also vary the time that it starts.
In addition, we may combine variations in window length and window timing
to duplicate any proposed scheme.

5.3 Varying Relative Admission Rates

Within this class of schemes, the relative rates of admission, rater and rateq,
from the regular line and physical QuickPass line are adjusted through varying
the parameter q. At any given time under this scheme, people who take a
QuickPass ticket at a given time t are asked to return at time t + W (Q)/rateq.
We will also consider two special cases of this scheme. In the first, we set
rater = rate, eliminating the QuickPass system entirely. In the second, we set
rateq = rate, effectively prohibiting the physical line from forming. This case
will be shown to be optimal.

6 Evaluation of Schemes

6.1 Window Lengths Do Not Matter If They Stay Rea-
sonable

In this section we work to determine what the best window length should be.
We find that due to the interplay of uncertainty and other variables, there will
be no one optimal length. Instead, we can only recommend that the window
length be chosen from a range of reasonable lengths.
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6.1.1 The Distribution of Arrival Times in a Window

We treat a visitor’s arrival time to the QuickPass (Pq) line as a random variable
following independent identical probability distributions with the property that
the probability that a visitor will arrive outside the window interval will be zero.

6.1.2 No No-Shows.

We assume that everybody will appear during their assigned window time. We
discuss the error associated with this assumption in Section 8.2.

6.1.3 Proof That Length Does Not Matter

The exact distributions of the arrival times and thus the window lengths allotted
to QuickPass users are easily shown to be irrelevant:

Assume for now that the event of a person showing up at a specific given in-
stant within their allotted window timeframe is a uniformly distributed random
variable; we refer to this event as X . The scheme suggests uniformity because
we cannot predict the trends of random visitor behavior on a daily basis.

The probability density function of X , whose window of return starts at time
t1 and ends at t1 + l is shown below in Figure 4. When a continuum of people
is added to the timeline or plot, we see that the sum of their density functions
becomes constant over time, except for the start and end points of the timeline,
which implies that it is only possible for a fixed number of people to show up
within any given timeframe. This effectively creates one large uniform distribu-
tion blended together, where people are continuously entering the system and
arriving to the Pq line at near uniform rates.

In order to control the number of people expected to enter the Pq line within
the window length l, the spacing between allotted return times should be sepa-
rated by at least l

n
.

This reasoning is easily generalized to other probability distributions, which
makes this statement even stronger.

Therefore, under the assumption that there are no no-shows, the exact length
of the suggested window of return, assuming a reasonable timeframe, is irrele-
vant.
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Likelihood

of Arrival

Time

It is 100% likely that someone will
 arrive in the desired time interval

t
1 1

t +l

1

6.1.4 Why Extreme Lengths are No Good

There are two extremes for the lengths of the window:

• The window could be too short: When this happens, it is likely that
people will forget or not be able to make it in time to their window. This
leads to people having to wait in line again from the very beginning.

• The window could be too long: As the window length grows, the
standard deviation will continue to grow as well. This in turn will cause
the distribution of arrivals to become more chaotic and will make it more
difficult to optimize the system.

There is no rigorous definition for an ”extreme window length.” We suggest
that the amusement park set the length of a window to be some reasonable
amount of time, between 20 and 60 minutes.

6.2 Ensure That Average Window Arrival Time Is W (Q)

Suppose that we have a QuickPass scheme that returns a ticket with mean
return time t0 + h. We may compare this return time with the time in which
people could maximally be packed into the ride from the QP line: t0 + W (Q).
In comparing the two schemes, there are two possibilities:

Case 1: h > W (Q).
But, when this is the case, we can expect that the ride will be leaving during

the [t0, t0+h] time period with only W (Q)
h

< 1 of the ride filled. This inefficiency
cannot be resolved.
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Case 2: h ≤ W (Q).
In this case, free time, F , is artificially limited. But, as we will see in

Theorem 2 this is optimal only when F = W (Q).

Theorem 1 Given any q ∈ [0, 1] with q indicating the QP rate proportion for

rateq, the optimal scheme will work to maximize F , the amount of free time

available to the customer, which in turn is done by minimizing W (Pq).

Proof: By definition of Eq:

Eq(At) =
F · E0(NF ) + m

W (Q)
=

NF · E0(NF )

At

+
m

W (Q)

Consider for now only NF ·E0(NF ). We may look at Eq(At) as a function
with respect to the NF variable. We consider that:

NF · E0(At) = m · rater

= NF · b
forNF < capr

forNF ≥ capr

And note that NF · b ≥ capr · b = m · rater. Thus we may maximize the
enjoyment Eq(At) with respect to NF by simply maximizing NF . Figure 5
below demonstrates how this works. ∇

Enjoyment/

second 

Number of people with

free time (NF)

capacity (cap  )r

Maximize free time for more
enjoyment

b

We now know that we want to maximize the amount of free time avail-
able to the customer. This free time is bounded by W (Q). Equivalently, the
scheme Eq yields maximum enjoyment when the wait time W (Pq) is minimized.

Thus, in order to optimize schemes, we must minimize W (Pq), the wait time in
the physical QuickPass line.
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6.3 The Special Case Is Optimal With Respect To Admis-
sion Rates

In this section we evaluate all schemes that set a fixed rate between the regular
and QuickPass lines and find that, with all things equal, higher rates for the
QuickPass (in exchange for lower regular rates) yield higher average levels of
enjoyment. This assertion is essentially the content of the following Theorem.

Theorem 2 Eq(At) > Ep(At) when q > p.

Proof: By definition of Eq in Equation (2):

Eq(At) =
F · E0(NF ) + m

W (Q)
=

NF · E0(NF )

At

+
m · rateq

At

Consider two cases.

Case 1: NF < capr. Then:

E0(NF ) =
m · rater

NF

So we see that:

Eq(At) =
NF ·

(

m·rater

NF

)

At

+
m · rateq

At

=
m · rater

At

+
m · rateq

At

Because rater + rateq = rate we see that the above simplifies to Eq(At) =
m

W (Q) .

Case 2: NF ≥ capr.

Then E0(NF ) = b. So:

Eq(At) =
NF · b

At

+
m · rateq

At

=
(NF − capr) · b

At

+
capr · b

At

+
m · rateq

At

Note that capr = maxwait · rater and that b = m
maxwait

so that capr · b =
m · rater. Substituting this in, we see that:

Eq(At) =
(NF − capr) · b

At

+
m · rater

At

+
m · rateq

At

=
(NF − capr) · b

At

+
m

W (Q)

So, we may look at Eq as a function of r. In order to maximize Eq with
relation to r one only needs to minimize capr. But capr = maxwait · rater,
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which means that one need only minimize rater; this is equivalent to maximiz-
ing rateq. Thus:

Eq(At) > Ep(At) when q > p. ∇

As an immediate result of this, we find that E1(At) ≥ Eq(At), for all q ∈

[0, 1]. In other words, E1 is optimal with respect to q.

7 Results

Based on the preceding theoretical proofs, we come to the following conclusion:
* Schemes which vary the relative rates of admission between the regular

line and the physical quickpass line can do no better than the special case in
which we set the rate of the QuickPass line to q=1 and the regular line to 0,
eliminating the regular queue.

* Schemes which vary window length published on the QuickPass ticket
cannot do any better than the q=1 case.

* Schemes which vary the arrival time issued by a fixed amount cannot
perform any better than the q=1 case.

We therefore make the following recommendations for administering a Quick-
Pass system:

·Remove the option for regular lines at popular lines and only allow the
QuickPass system ·If deinstituting regular lines is not feasible, the scheme that
minimizes overall wait time will be the one that maximizes enjoyment.

8 Model Accuracy and Suggestions for Future
Expansion

We made the assumption that the QuickPass system can be made to run at near
zero wait at all times; however, in reality, wait time will vary as a consequence
of a number of factors. One group of these inaccuracies is due to the uncertainty
that results from dealing with things that are impossible to quantify. The other
group of these inaccuracies is due to problems in our assumptions of continuity,
focused around the area in which the rides are continually departing. We gain
an understanding of the uncertainties through ε. The lack of continuity is better
understood in looking more closely at the ride departures. We analyze these
two groups of factors in the following two sections.

8.1 The error, ε

In our work above, we have expressed the error in the Virtual QuickPass wait
time as ε. In this, ε is composed of many factors, some of which include:

• Variations in exact ride departure time.
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• Variations in the arrival time of people.

• The propensity for people to forget about their window.

We would have liked to explore these issues in more depth, but time con-
straints force us to account for these unknowns by adding an error term.

8.2 Concessions for the lack of continuity in ride depar-
tures

We roughly expect the actual wait time on even the best QuickPass schemes to
behave according to the fact that lines are not truly continuous, but discrete
according to the ride duration. Visitors arriving throughout a window will have
to wait, at most, for the extent of the ride duration for the next car to leave.

We find that the average unavoidable wait time is the rideduration
2

Time

Ride leaves

Number of people in

the line.

Factoring in the unavoidable wait times due to specific
ride departure times.

8.3 Minor difficulties with discrete ride departure times

Due to the uncertainty and the lack of true continuity, it will be impossible to
perfectly maintain zero wait time in the physical QuickPass line. The fluctua-
tions occur in two directions.

Sometimes the line will slow down and people will begin to have to wait in the
physical QuickPass line. this is to be expected and does not cause great problems
because these line lengths stay low and also the alternative is frequently to wait
in either the regular line or to get only a very small amount of enjoyment through
alternative rides.

Other times the line will move too quickly and the rate at which people are
flowing into the line will be less than the rate at which they are entering the
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ride. This scenario opens the possibility for the ride leaving with less than a
full load of passengers. While the line moving too slow does not cause serious
problems, the line moving too quickly will cause inefficiencies that cannot be
recovered. This is a problem.

8.4 Consider Implementing a “Spillover” Line

A possible solution this problem of not having enough people for the ride would
be to introduce a new type of a line that only moves forward when the physical
QuickPass line moves too quickly. We will call this type of line a ”spillover line.”
While we do not have the time to fully evaluate the ”spillover line,” it does seem
(in theory at least) that the ”spillover line” would eliminate the inefficiencies
outlined above.

9 Strengths

• The model avoids the specified set of complaints intrinsically by maintain-
ing and enforcing the virtual queue of QuickPass holders.

• The model establishes a valid criteria for determining which types of plans
will work and is able to make a definitive judgment of scheme superiority
that is not dependent on the specific window lengths or rates of a specific
scheme.

• It is robust with respect to variation in parameters. In particular, the
exact enjoyment experienced on a given popular ride can take on any
positive value without affecting the validity of our results.

• The model does not require additional information to be provided to the
QuickPass machines outside of park attendance.

10 Weaknesses

• In certain amusement parks, the assumption about b being constant may
begin to cause problems. This will occur if the difference between the
QuickPass and the non-QuickPass rides is not large as it will be more likely
that significant lines will form for the alternative attractions, lessening
enjoyment. However, the general trend is that the b number will decrease
more slowly than the value m

WPq
and so the results of this model still are

likely to hold true.

• The assumptions that the visitors preferences may form an average and
that everybody will rationally maximize their enjoyment does not allow for
diversity and randomness that might occur. As a result the model makes
the situation appear to be more smooth than it really is. While this is
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partially accounted for with the error term ε, it is also an inescapable by-
product of the macroeconomic equilibrium perspective that was adopted
for the model.

It may be possible to extend the fact that window length variation and
window time variation are irrelevant to window length to establish that the q
= 1 case is as good as any scheme can possibly get; this constitutes worthy
grounds for future exploration if we had more time.
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12 Nontechnical Summary

9 February 2004 FROM: 486 Consulting, Super Bathrooms Department TO:
FunPark, Inc. Executive Board RE: Executive Summary

We are pleased to present our recommendations for administering the Quick-
Pass system at FunPark. Economic theory dictates most other aspects of run-
ning your business, so we present a method under which you can apply the same
rules to measuring the efficiency of any given queuing system.

We developed a way to measure how much people are enjoying FunPark
using economic theory that treats the experience of riding rides as a consumer
product and the amount of time spent waiting for a ride as the price paid for
that product. The system then gravitates to an equilibrium where people are
acting to get the best bang for their buck in this case, thrill for their second
in a quantifiable and measurable way.

Competing consultants may have brought schemes before your attention.
Some schemes modify the rates at which users flow through regular lines versus
lines designated for QuickPass ticket holders. We have succinctly proved that
because the behavior of the two lines are unrelated, schemes that try to vary
the relative rates can do no better than a scheme that bans normal lines and
only allows QuickPass lines. Other schemes may attempt to modify the time
the QuickPass system asks visitors to return to the ride, but we show that such
changes will have little or no bearing on the resulting enjoyment. Enclosed in
our report is a thorough analysis of what each of these schemes can do and
the results of our analysis of each one. We found that out of these, only a
scheme implementing QuickPass lines by themselves was most likely to maximize
enjoyment. We have enclosed formal mathematical proofs of these relationships
in our final report.

As an added bonus that you will find appealing, our criteria for measuring
the quality of a given scheme depends on maximizing the number of people who
have free time. This free time they are likely to spend at alternative revenue-
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generating attractions throughout the park such as restaurants and carnival
games.

Our final recommendations are as follows:

• Remove the option for regular lines at popular rides wherever possible

• If de-instituting regular lines is simply not feasible for reasons unrelated
to overall enjoyment gain, attempt to minimize the size of the physical
queue at all times and maximize the number of persons in the park with
free time.

• Institute a secondary overflow line to account for inherent unpredictability
in the QuickPass queue.
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