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Fig. 1 illustrates one of the patterns computed by means of the SR Virtual Reality Testbed for Brain—Computer Interface

method. In order to facilitate visual interpretation, the pattern has been Research
derived from all 26 electrodes. Also, for the sake of simplicity, only
the features related to thepeak are visualized. The figure shows the Jessica D. Bayliss and Dana H. Ballard

distributions of the features in the subject RAO1 for the imagined right

and left movements when using SL-transformed potentials. ) ) ) )
The simplicity of the classifier we have utilized suggests that it |l§ aﬁEig;C;a\gt?r?tle:fZi";y(ggT'S?;ott(;p?;t_eﬁogeofreﬂ? xgrﬁoﬁzzﬁf

still possible to increase the recognition rates if SSP is combined Wfactroencephalograph (EEG) signals in VR has focussed on brain—body

more powerful classifiers. In particular, SSP can be used either ascauated control, where biological signals from the body as well as the

preprocessor for an artificial neural network, or to classify data usifigin are used. We show that when subjects are allowed to move and act

patterns obtained through Self Organizing Maps. This is subject to dimally in an immersive virtual environment, cognitive evoked potential
going research signals can still be obtained and used reliably. A single trial accuracy

: ) o ) ~_average of 85% for recognizing the differences between evoked potentials
Results obtained in this first year of the ABI project also indicatgt red and yellow stop lights will be presented and future directions

that SL electrodes return waveforms correlated with the numericafliscussed.

computed surface Laplacian. A new design of these electrodes, whicthge Terms—8rain—computer interface (BCI), P3, virtual reality (VR).
is easier to place and less noisy, is under study. In the context of a Brain

Computer Interface a few SL electrodes can improve the quality of the

acquired signals. I. INTRODUCTION

Recent brain—computer interface (BCI) work has shown the feasi-
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Il. MATERIALS AND METHODS

The VR environment is rendered on a SGI Onyx. For immersion,
subjects wear a binocular head-mounted display (HMD) containing a
camera-based eye tracker. While collecting EEG data, eye tracking data
is also collected and overlaid onto a videotape of the virtual scene.
This dual data collection enables a comparison of what an individual
is looking at with what the BCI is doing and can be used to find BCI
recognition errors that could not be found by looking at the EEG data
alone.

The heart of this system is the NeuroScan commercial package on a
Pentium PC. A dynamic linked library (DLL) provided by NeuroScan
enables locally written software to have access to all unprocessed data
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TABLE |
SUMMARY OF CLASSIFICATION RESULTS
OVER FIVE SUBJECTS OVERTHREE DIFFERENTALGORITHMS

Average % Correct

Correlation | ICA Robust
Kalman Filter

Red 82 74 71

Yellow 60 80 90

Total 67 78 83
TABLE I

CLASSIFICATION RESULTS OVERFIVE INDIVIDUAL SUBJECTS FOR
THE ROBUST KALMAN FILTER AS WELL AS RESULTS FORTWO
RETURN SUBJECTS(p < 0.01)

Robust Kalman Filter % Correct
Fig. 1. Atypical stoplight scene in the virtual driving environment.

Return
Subjects| Red | Yellow| Total Total
and trigger codes. Signal processing is done in Matlab in order to enable
. . . . . S1 55 86 77 -
maximum algorithm flexibility. Feedback to the virtual world is done
through a serial port interface between the SGI and the PC. 52 82 o4 90 -
S3 74 85 81 —
B. Virtual Driving S4 65 91 32 85
VR allows subjects to make on-line decisions in a dynamic envi- S5 78 92 87 80

ronment. Thus, the best tasks for this environment involve interaction
with virtual objects. To this end, we have used the driving environment1g qetermine that the P3 EP occurred only at red stoplights, we cal-

shown in Fig. 1 to look at on-line cue recognition during a stoplighty,|ateq the averages over red light and yellow light trials with trials
detection task. ‘where the subject ran a red light (approximately two per subject) re-

In order to test the feasibility of on-line recognition in the VR enviy,oved. As expected, the data obtained while driving contained arti-

ronment, we recognized the P3 EP. Previous P3 research has congefs 1 reduce these artifacts before averaging, we preprocessed the
trated primarily on static environments such as the continuous perfgi, ang subtracted a combination of eye and head movement artifact
mance task [10]. In the traditional visual continuous performance ta?}&ing the linear regression technique described in [11]. Results show

static images are flashed on a screen and the subject is told to pregs,f; p3 EP indeed occurs at red and not yellow lights [12]
button or count the occurrences of a rare stimulus when it occurs on the

screen. This makes the stimulus both rare and task relevant in order to
evoke a P3. As an example, given red and yellow stoplight pictures, a
P3 should occur if the red picture is less frequent than the yellow andWhile averages show the existence of the P3 EP at red lights and the
subjects are told to press a mouse button only during the red lightalsence of such at yellow lights, we needed to discover if the signal was
similar response occurs in a VR driving world when red stop lights aselfficient for single trial recognition as the feedback needed by a BCI
infrequent and subjects are told to stop their virtual cars at the red ligtiepends on quick recognition. We tried three methods for classifica-
In order to make yellow lights more frequent, both green and red lightisn of the P3 EP: correlation, independent component analysis (ICA)
were preceded by yellow lights. [13], and a robust Kalman filter [14]. We summarize the data over five
Subjects were instructed to drive in a virtual town and stop at rethbjects for all algorithms in Table I. All algorithms performed signif-
stop lights while ignoring both green and yellow lights. The subjectsantly better than correlation, but ICA did not perform significantly
used a modified go cart with brake, accelerator, and steering outputitfierent from the robust Kalman filter.
control the virtual car. Go cart driving is more like a “natural” driving We classified approximately 90 yellow light and 45 red light data
task than driving and stopping with a mouse. While this choice coubochs from each subject. The P3 EP existed at red lights and repre-
cause more artifacts in the signal collection (due to muscular activégnted a BCI code for a “stop” action. The P3 did not exist at yellow
during turning and braking), the most significant artifacts observed lights and thus represented a code that no action should be performed.
the data were due to eye movement as determined by visual inspecttas more important that the yellow lights be classified as non-P3 than
and correlation between eye and other channels. the red lights classified as P3. As an example, if an individual uses
Whenever a traffic light in front of the subject changed colothe P3 to control a TV, it would be acceptable to have to try twice
a trigger pulse containing information about the color of the light turn on the TV, but it would be unacceptable to have the TV turn
was sent to the NeuroScan system. While an epoch size 260 on and off randomly because of falsely recognized P3’s. As shown in
ms to 1 s was specified, the data was recorded continuously. Eighble I, the percentage of red light P3’s classified correctly (true posi-
electrodes sites (FZ, CZ, CPZ, PZ, P3, P4, as well as two vertical EQi&s) steadily declines from correlation to the Kalman filter while the
channels) were arranged on the heads of five subjects with a linkgetcentage of correctly classified yellow lights steadily improves (true
mastoid reference. Electrode impedances were betweernf2#érlall  negatives). This shows a trade-off between recognizing all P3’s (the red
subjects. The EEG signal was amplified using Grass amplifiers wilights) and rejecting the majority of the non-P3'’s (the yellow lights).
an analog bandwidth from 0.1 to 100 Hz. Signals were then digitizedEach subject’s data for the best performer (the robust Kalman filter)
at a rate of 500 Hz and stored on a computer. is shown in Table Il. Data was preprocessed with the method described

IIl. RESULTS
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in the previous section. The robust Kalman filter was trained using refL3] S. Makeig, A. Bell, T. Jung, and T. Sejnowski, “Independent compo-
and yellow light averages from the maximal electrode site for obtaining ~ nentanalysis of electroencephalographic dakaly. Neural Inform. Pro-
the P3 for each subject. We used the whole trial epoch for recognitiop, . S€SSing Systvol. 8, pp. 145-151, 1995. )

L - - . @4] R. P. N. Rao, “Kalman filter model of the visual corteXeural Com-
because it yielded better recognition than just the time area around a po- putation 1997.
tential P3. In order to look at the reliability of the robust Kalman filter
two of the Subjects (S4 and S5) returned for another VR driving ses-
sion. The results of this session using the robust Kalman Filter trained
on the first session are shown in the last column of Table Il. The recog-
nition numbers for red and yellow lights between the two sessions
were compared u§ing gorrelation. Red light scores between the sesthe Thought Translation Device (TTD) for Completely
sions correlated fairly h|ghly: 0.82 for S4 and 0.69.for S5. The yellow Paralyzed Patients
light scores between sessions correlated poorly with both S4 and S5 at

around-0.1. This indicates that the yellow light epochs tend to corrayiels Birbaumer, Andrea Kiibler, Nimr Ghanayim, Thilo Hinterberger,
late poorly with each other due to the lack of a large component suchouri Perelmouter, Jochen Kaiser, Iver Iversen, Boris Kotchoubey,
as the P3 to tie them together. Nicola Neumann, and Herta Flor

IV. FUTURE WORK Abstract—The thought translation device trains locked-in patients to
self-regulate slow cortical potentials (SCP’s) of their electroencephalogram
The recognition rates presented make it practical to use the P3 EBG). After operant learning of SCP self-control, patients select letters,
as an interface to devices such as TV’s, radios, and other applian®é¥ds or pictograms in a computerized language support program. Results
The ease of swapping user interfaces in this BCI system facilitates s ﬁﬂve respirated, locked-in-patients are described, demonstrating the use-
. | | K hat th ful fulness of the thought translation device as an alternative communication
environmental control work. We expect that t e most usetu BCI Willhannel in motivated totally paralyzed patients with amyotrophic lateral
rely on a variety of brain signals. For example, if a patient can develgglerosis.

wu-rhythm control, they might want to use it to control the volume on Index Terms—Electroencephalogram (EEG), language support pro-
a TV with a P3 being used to control the on—off functions. Contextuglam locked-in, operant learning, slow cortical potentials (SCP's).
information, when available, should also be used. Environmental con-

trol provides many ready opportunities for this because of the different

physical locations of items. |. INTRODUCTION

A communication device for the completely paralyzed was devel-
oped using an operant learning approach for the self-regulation of
EEG signals. The procedure was tested in locked-in patients with
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