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Fig. 1 illustrates one of the patterns computed by means of the SSP
method. In order to facilitate visual interpretation, the pattern has been
derived from all 26 electrodes. Also, for the sake of simplicity, only
the features related to the� peak are visualized. The figure shows the
distributions of the features in the subject RA01 for the imagined right
and left movements when using SL-transformed potentials.

The simplicity of the classifier we have utilized suggests that it is
still possible to increase the recognition rates if SSP is combined with
more powerful classifiers. In particular, SSP can be used either as a
preprocessor for an artificial neural network, or to classify data using
patterns obtained through Self Organizing Maps. This is subject to on-
going research.

Results obtained in this first year of the ABI project also indicate
that SL electrodes return waveforms correlated with the numerically
computed surface Laplacian. A new design of these electrodes, which
is easier to place and less noisy, is under study. In the context of a Brain
Computer Interface a few SL electrodes can improve the quality of the
acquired signals.
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A Virtual Reality Testbed for Brain–Computer Interface
Research

Jessica D. Bayliss and Dana H. Ballard

Abstract—Virtual reality promises to extend the realm of possible
brain–computer interface (BCI) prototypes. Most of the work using
electroencephalograph (EEG) signals in VR has focussed on brain–body
actuated control, where biological signals from the body as well as the
brain are used. We show that when subjects are allowed to move and act
normally in an immersive virtual environment, cognitive evoked potential
signals can still be obtained and used reliably. A single trial accuracy
average of 85% for recognizing the differences between evoked potentials
at red and yellow stop lights will be presented and future directions
discussed.

Index Terms—Brain–computer interface (BCI), P3, virtual reality (VR).

I. INTRODUCTION

Recent brain–computer interface (BCI) work has shown the feasi-
bility of online averaging and biofeedback methods in order to choose
characters or move a cursor on a computer screen with up to 95% ac-
curacy [1]–[4]. Previous research in virtual reality (VR) has looked at
brain–body actuated control [5] or steady state visual evoked poten-
tials [6]. VR promises to extend the realm of possible BCI prototypes
through allowing individuals to interact directly with an environment
rather than a computer monitor while still maintaining the environ-
mental control necessary in research. The safety of VR also makes it
an excellent candidate for BCI research on real-time tasks and VR can
serve as a motivational tool for people because it is often perceived as
an interesting environment.

BCI’s are most often used for augmentative communication by in-
dividuals with locked-in syndrome. The P3-evoked potential (EP) is a
positive waveform occurring approximately 300–450 ms after an infre-
quent task-relevant stimulus [7], [8]. It has been shown that even when
the P3 evoked potential (EP) component disappears after a brain stem
injury, it can be regained [9]. Thus, this particular EP is a widely avail-
able signal that does not heavily depend on the problems of a particular
patient.

II. M ATERIALS AND METHODS

A. The System

The VR environment is rendered on a SGI Onyx. For immersion,
subjects wear a binocular head-mounted display (HMD) containing a
camera-based eye tracker. While collecting EEG data, eye tracking data
is also collected and overlaid onto a videotape of the virtual scene.
This dual data collection enables a comparison of what an individual
is looking at with what the BCI is doing and can be used to find BCI
recognition errors that could not be found by looking at the EEG data
alone.

The heart of this system is the NeuroScan commercial package on a
Pentium PC. A dynamic linked library (DLL) provided by NeuroScan
enables locally written software to have access to all unprocessed data
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Fig. 1. A typical stoplight scene in the virtual driving environment.

and trigger codes. Signal processing is done in Matlab in order to enable
maximum algorithm flexibility. Feedback to the virtual world is done
through a serial port interface between the SGI and the PC.

B. Virtual Driving

VR allows subjects to make on-line decisions in a dynamic envi-
ronment. Thus, the best tasks for this environment involve interaction
with virtual objects. To this end, we have used the driving environment
shown in Fig. 1 to look at on-line cue recognition during a stoplight
detection task.

In order to test the feasibility of on-line recognition in the VR envi-
ronment, we recognized the P3 EP. Previous P3 research has concen-
trated primarily on static environments such as the continuous perfor-
mance task [10]. In the traditional visual continuous performance task,
static images are flashed on a screen and the subject is told to press a
button or count the occurrences of a rare stimulus when it occurs on the
screen. This makes the stimulus both rare and task relevant in order to
evoke a P3. As an example, given red and yellow stoplight pictures, a
P3 should occur if the red picture is less frequent than the yellow and
subjects are told to press a mouse button only during the red light. A
similar response occurs in a VR driving world when red stop lights are
infrequent and subjects are told to stop their virtual cars at the red light.
In order to make yellow lights more frequent, both green and red lights
were preceded by yellow lights.

Subjects were instructed to drive in a virtual town and stop at red
stop lights while ignoring both green and yellow lights. The subjects
used a modified go cart with brake, accelerator, and steering output to
control the virtual car. Go cart driving is more like a “natural” driving
task than driving and stopping with a mouse. While this choice could
cause more artifacts in the signal collection (due to muscular activity
during turning and braking), the most significant artifacts observed in
the data were due to eye movement as determined by visual inspection
and correlation between eye and other channels.

Whenever a traffic light in front of the subject changed color,
a trigger pulse containing information about the color of the light
was sent to the NeuroScan system. While an epoch size from�100
ms to 1 s was specified, the data was recorded continuously. Eight
electrodes sites (FZ, CZ, CPZ, PZ, P3, P4, as well as two vertical EOG
channels) were arranged on the heads of five subjects with a linked
mastoid reference. Electrode impedances were between 2–5 k
 for all
subjects. The EEG signal was amplified using Grass amplifiers with
an analog bandwidth from 0.1 to 100 Hz. Signals were then digitized
at a rate of 500 Hz and stored on a computer.

TABLE I
SUMMARY OF CLASSIFICATION RESULTS

OVER FIVE SUBJECTS OVERTHREE DIFFERENTALGORITHMS

TABLE II
CLASSIFICATION RESULTS OVERFIVE INDIVIDUAL SUBJECTS FOR

THE ROBUST KALMAN FILTER AS WELL AS RESULTS FORTWO

RETURN SUBJECTS(p < 0:01)

To determine that the P3 EP occurred only at red stoplights, we cal-
culated the averages over red light and yellow light trials with trials
where the subject ran a red light (approximately two per subject) re-
moved. As expected, the data obtained while driving contained arti-
facts. To reduce these artifacts before averaging, we preprocessed the
data and subtracted a combination of eye and head movement artifact
using the linear regression technique described in [11]. Results show
that a P3 EP indeed occurs at red and not yellow lights [12].

III. RESULTS

While averages show the existence of the P3 EP at red lights and the
absence of such at yellow lights, we needed to discover if the signal was
sufficient for single trial recognition as the feedback needed by a BCI
depends on quick recognition. We tried three methods for classifica-
tion of the P3 EP: correlation, independent component analysis (ICA)
[13], and a robust Kalman filter [14]. We summarize the data over five
subjects for all algorithms in Table I. All algorithms performed signif-
icantly better than correlation, but ICA did not perform significantly
different from the robust Kalman filter.

We classified approximately 90 yellow light and 45 red light data
epochs from each subject. The P3 EP existed at red lights and repre-
sented a BCI code for a “stop” action. The P3 did not exist at yellow
lights and thus represented a code that no action should be performed.
It is more important that the yellow lights be classified as non-P3 than
the red lights classified as P3. As an example, if an individual uses
the P3 to control a TV, it would be acceptable to have to try twice
to turn on the TV, but it would be unacceptable to have the TV turn
on and off randomly because of falsely recognized P3’s. As shown in
Table I, the percentage of red light P3’s classified correctly (true posi-
tives) steadily declines from correlation to the Kalman filter while the
percentage of correctly classified yellow lights steadily improves (true
negatives). This shows a trade-off between recognizing all P3’s (the red
lights) and rejecting the majority of the non-P3’s (the yellow lights).

Each subject’s data for the best performer (the robust Kalman filter)
is shown in Table II. Data was preprocessed with the method described
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in the previous section. The robust Kalman filter was trained using red
and yellow light averages from the maximal electrode site for obtaining
the P3 for each subject. We used the whole trial epoch for recognition
because it yielded better recognition than just the time area around a po-
tential P3. In order to look at the reliability of the robust Kalman filter
two of the Subjects (S4 and S5) returned for another VR driving ses-
sion. The results of this session using the robust Kalman Filter trained
on the first session are shown in the last column of Table II. The recog-
nition numbers for red and yellow lights between the two sessions
were compared using correlation. Red light scores between the ses-
sions correlated fairly highly: 0.82 for S4 and 0.69 for S5. The yellow
light scores between sessions correlated poorly with both S4 and S5 at
around�0.1. This indicates that the yellow light epochs tend to corre-
late poorly with each other due to the lack of a large component such
as the P3 to tie them together.

IV. FUTURE WORK

The recognition rates presented make it practical to use the P3 EP
as an interface to devices such as TV’s, radios, and other appliances.
The ease of swapping user interfaces in this BCI system facilitates such
environmental control work. We expect that the most useful BCI will
rely on a variety of brain signals. For example, if a patient can develop
�-rhythm control, they might want to use it to control the volume on
a TV with a P3 being used to control the on–off functions. Contextual
information, when available, should also be used. Environmental con-
trol provides many ready opportunities for this because of the different
physical locations of items.
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The Thought Translation Device (TTD) for Completely
Paralyzed Patients

Niels Birbaumer, Andrea Kübler, Nimr Ghanayim, Thilo Hinterberger,
Jouri Perelmouter, Jochen Kaiser, Iver Iversen, Boris Kotchoubey,

Nicola Neumann, and Herta Flor

Abstract—The thought translation device trains locked-in patients to
self-regulate slow cortical potentials (SCP’s) of their electroencephalogram
(EEG). After operant learning of SCP self-control, patients select letters,
words or pictograms in a computerized language support program. Results
of five respirated, locked-in-patients are described, demonstrating the use-
fulness of the thought translation device as an alternative communication
channel in motivated totally paralyzed patients with amyotrophic lateral
sclerosis.

Index Terms—Electroencephalogram (EEG), language support pro-
gram, locked-in, operant learning, slow cortical potentials (SCP’s).

I. INTRODUCTION

A communication device for the completely paralyzed was devel-
oped using an operant learning approach for the self-regulation of
EEG signals. The procedure was tested in locked-in patients with
amyotrophic lateral sclerosis (ALS) [1]–[4]. The thought translation
device (TTD) uses slow cortical potentials (SCP’s) to select letters
or words from a language support program. SCP’s are shifts in the
depolarization level of the upper cortical dendrites which are caused
by intracortical and thalamocortical afferent inflow to neocortical
layers I and II. Negative SCP’s are the sum of synchronized ultraslow
excitatory postsynaptic potentials from the apical dendrites. Positive
SCP’s result from a reduction of synchronized inflow to the apical
dendrites or may be caused by inhibitory activity or by excitatory
outflow from the cell bodies in layers IV and V. Positive SCP’s
lasting from 300 ms to several seconds or minutes are correlated with
a disfascilitation of the involved cortical networks. Behavioral and
cognitive performance is improved after subjects or patients have
learned to increase the negativity of the SCP, while cognitive and
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