
Coordinating Simultaneous Caching
of File Bundles from Tertiary Storage

A. Shoshani, A. Sim, L. M. Bernardo, H. Nordberg,
National Energy Research Scientific Computing Division

Lawrence Berkeley National Laboratory
(Shoshani, Asim, LMBernardo, Hnordberg)@lbl.gov

Abstract

In a previous paper [Shoshani et al 99], we
described a system called STACS (Storage
Access Coordination System) for High Energy
and Physics (HEP) experiments. These
experiments generate very large volumes of
“event” data at a very high rate. The volumes of
data may reach 100's of terabytes/year and
therefore they are stored on robotic tape systems
that are managed by a mass storage system. The
data are stored as files on tapes according to a
predetermined order, usually according to the
order they are generated. A major bottleneck is
the retrieval of subsets of these large datasets
during the analysis phase. STACS is designed
to optimize the use of a disk cache, and thus
minimize the number of files read from tape. In
this paper, we describe an interesting problem of
disk staging coordination that goes beyond the
one-file-at-a-time requirement. The problem
stems from the need to coordinate the
simultaneous caching of groups of files that we
refer to as "bundles of files". All files from a
bundle need to be at the same time in the disk
cache in order for the analysis application to
proceed. This is a radically different problem
from the case where the analysis applications
need only one file at a time. In this paper, we
describe the method of identifying the file
bundles, and the scheduling of bundle caching in
such a way that files shared between bundles are
not removed from the cache unnecessarily. We
describe the methodology and the policies used
to determine the order of caching bundles of
files, and the order of removing files from the
cache when space is needed.

1. Introduction

Because of advances in computer technology and
automated sensor system, it is possible today to
set up experiments and simulations that generate
tremendous amounts of data. It is common to
hear of systems that collect or generate terabytes

(1012 bytes) or even petabytes (1015 bytes) of
data. While disk systems are becoming cheaper,
storing terabytes/petabytes of data on disk
continues to be economically prohibitive.
Therefore, most of the data from such
experiments/simulations are stored on robotic
tape systems. This presents a challenge of how
to organize and manage the data stored on tape
systems.

One scientific application area that generates
large amounts of data is High Energy Physics
(HEP). Over the last three years, we have
developed a system for coordinating the access
to tertiary storage for multiple HEP clients
wishing to access data from files stored on tape.
The system, called STACS (STorage Access
Coordination System) essentially performs 4
functions: (i) it determines, for each query
request, which files need to be accessed; (ii) it
determines the order of files to be cached
dynamically so as to maximize their sharing by
queries; (iii) it requests the caching of files from
the robotic tape system in tape optimized order;
and (iv) it determines dynamically which files to
keep in the disk cache to maximize file usage.
This system was described in [Shoshani et al
99]). However, the previous paper deals with
application clients that require only a single file
at a time to proceed with the analysis. For
reasons explained below, it is often the case that
multiple files are needed simultaneously for the
analysis. This led to the work described in this
paper.

To explain the problem we address in this paper,
we describe briefly the type of data generated by
the HEP experiments. In HEP experiments,
elementary particles are accelerated to nearly the
speed of light and made to collide. These
collisions generate a large number of additional
particles. For each collision, called an "event",
about 1-10 MBs of raw data are collected. The
rate of these collisions is 1-10 per second,
corresponding to 30-300 million events per year.
Thus, the total amount of raw data collected in a

year amount to 100s of terabytes to a few
petabytes. After the raw data are collected they
undergoes a "reconstruction" phase, where each
event is analyzed to determine the particles it
produced and to extract its summary properties
(such as the total energy of the event,
momentum, and number of particles of each
type). The volume of data generated after the
reconstruction phase ranges from a tenth of the
raw data to about the same volume. Most of the
time only the reconstructed data are needed for
analysis, but the raw data must still be available.

Event data can be thought of as "chunks of data"
which are organized into files, normally about 1
GB each. The reason for this size is that the
mass storage system (which in our case is called
HPSS♣ – the High Performance Storage System
developed by IBM) operates more efficiently
with large files. However, we do not wish to
make files too big, since files cached may
contain too much unneeded data. Typically,
there may be 100-500 events in a file. When a
file is cached for an application only part of the
events may be relevant to it. For example, if the
application needs events with energy>5 GEV,
then only a fraction of events in each file may
qualify.

STACS was originally designed assuming that a
HEP analysis client can find all the data it needs
about a particular event in a single file.
However, because of the size of the data, it was
decided to partition the reconstructed data into
"component" types. Each event has several
components associated with it. In HEP these
components correspond to different aspects of
the physics, such as the trajectories of each of the
1000s of particles produced in the collision
(called "tracks"), and the positions in space
where particles split (called "vertices"). Since
not all the components are needed at the same
time for analysis, and the volume of the data is
so large, the data is partitioned into these
component types and stored separately. For
analysis, the Client (user) can specify that any
combination of these components can be
requested concurrently, i.e. the files containing
these components need to be in the cache at the
same time to perform the analysis. This is the
problem addressed in this paper.

We note that this kind of data are not unique to
the HEP application area. For example, earth

♣ http://www.sdsc.edu/hpss/

observation satellites [NASA web] have multiple
sensors, each generating a series of images/data-
chunks. For each point in time-space, there is a
collection of data-chunks, some of which maybe
needed at the same time for analysis. Another
example is the series of images collected for
gene expression data. Each image is analyzed,
and several data objects can be associated with
each image. Here again, several images and
associated data objects may be needed at the
same time depending on the nature of the
analysis performed on such data.

In section 2, we introduce the concept of a file
bundle, and the practical reasons for that.
Section 3 describes what extensions were made
to the STACS index to support file bundles. In
section 4, we describe the methodology and
techniques used to achieve file bundle caching
coordination. In section 5, the implementation
of the STACS system is described, as well as the
method for monitoring the system operation. We
conclude in section 6 with a summary and a
discussion of future work.

2. File Bundles

As explained above, each event Ei has several
component data-chunks associated with it:
C1(Ei), C2(Ei), … , Cn(Ei). While the system is
designed for any number of components n, it is
typically less than 10. In general, a component
Cj(Ei) can reside in any file, Fk; i.e. a given file
can have a mixture of component types.
However, in HEP applications, it makes sense to
organize the components into files according to
types, since a request by the application for
certain component types would not involve
caching of files with other component types.
Thus, all components of type Cj (for all events
Ei) go into their own series of files, i.e. every file
contains only components of a certain type. This
is illustrated in Figure 1.

As can be seen, if we look at each combination
of files containing components of type A and
files containing components of type B, they have
components of certain events in common. For
example, file1 and file2 in Figure 1 have
components of the events {E1, E2, E3, E5) in
common. We call such a file combination a file
bundle. If, for example, an application needs
component A and Component B for events E3,
E5, E7, the system will bring to cache two file
bundles: the file bundle (F1,F2) for events E3
and E5, and the file bundle (F3,F2) for event E7.

Figure 1: Components of events and file bundles.

We note that not all events may be needed out of
a particular file bundle. In the above case only
E3,E5 are needed out of the file bundle (F1,F2),
and only E7 is needed out of (F3,F2). Therefore,
a file bundle can be used by several clients, each
accessing another subset of the event
components.

File bundles can have overlapping files. In the
above example F2 is overlapping. The
importance of overlapping files is in managing
the cache. When a given file bundle is brought
into the disk cache, the system has to give a
priority of keeping an overlapping file in cache
till the other file(s) of other overlapping bundles
are brought into cache. This is one aspect of the
problem we address in the next section. We note
that a file bundle is the minimal set of files that
must be in cache for the Client (analysis code) to
proceed. It is not enough to find all the files that
are necessary for the query, since we may not
have the space in cache to bring all the files at
once for the query. Thus, we need to know the
minimal file set (or the bundle), and if space
permits, or a priority policy allows, more
bundles can be brought in. We refer to bringing
more than one file bundle at a time to cache as a

"pre-fetching" policy in section 4. If the system
policy permits more files to be cached per user, it
is best to cache bundles that have files in
common. This is also addressed in the
coordination algorithms described in section 4.

Another aspect of the problem is how to
determine which files to bring into cache when a
new bundle is needed by the Client. The goal is
to maximize file sharing between the clients. It
is also necessary to avoid deadlocks, where 2 or
more bundles are partially in cache, each waiting
for the other(s) to release files.

As mentioned previously, we should not, in
general, make the assumption that event
components are always grouped into files
according to their component types. For
example, suppose that events are partitioned into
components CA, CB, and CC. We may have the
components for event E3, CA(E3), CB(E3), and
CC(E3), all residing in the same file Fk. In this
case the file bundle for E3 is made of the single
file Fk. This implies that for a particular request,
the file bundles can be of different cardinalities
(but, they cannot exceed the number of
components requested). Our solution makes no

E1

E2

E3

E4

E5

E6

E7

E8

E9

Files of
Component A

Files of
Component B

Component A
of event e1

Component B
of event e1

File 4File 3

File 1 File 2

File Bundles: (F1,F2: E1,E2,E3,E5), (F3,F2: E4,E7), (F3,F4: E6,E8,E9)

assumptions on the number of files in the
bundles, or whether components of different
types are stored in different files. The case of
files that contain only components of a certain
type is, therefore, a special case that is handled
as well.

3. Finding the Bundles

To select which files are relevant to a given
query, we need an index that maps from the
predicate conditions on properties specified in
the query to the set of files needed to satisfy the
query. Because of the large number of index
entries (108-109) and the high dimensionality of
the property space, we developed a specialized
bit-sliced index [Shoshani et al 99]. In the initial
version, the index was designed to support
queries that do not specify components; that is,
all the data for an event data are assumed to be in
a single file. For example, the following query
specifies range predicates for a dataset called
star_dataset:

SELECT *
FROM star_dataset
WHERE 500<total_tracks<1000 & energy<3

The bit-sliced index associates a fixed vector
position with each event. Given a query, it
returns a (compressed) bit-slice, where a 1
indicates that an event qualified in this position
and a 0 indicates that it does not qualify. This
bit-slice is then applied to a file vector
containing the corresponding file IDs. The result
returns the list of files that qualifies for this
query. By removing the file duplicates (using a
hash map), the index generates the set of files
that qualify for this query, and for each file the
subset of events that are relevant to this query.
An example of the result is shown below, where
inside the [] we specify the file and the events in
it that qualify for the query, and {} denotes a set
of files.

{[F7: E4,E17,E44], [F13: E6,E8,E32], … }

Note that it is not possible to have file overlap in
this case, since if this exists the event sets will be
put together into a single list associated with this
file.

Now, this index had to be extended to handle
component specification. Suppose that events
were partitioned into components called “raw”,

“tracks”, “hits” and “vertices”. An example of a
query is:

SELECT vertices, raw
FROM star_dataset
WHERE 500<total_tracks<1000 & energy<3

where only the components "vertices" and "raw"
are requested. An example of a result is shown
in the following example, where inside the [] we
specify the file bundle and the events in it that
qualify for the query, and {} denotes a set of file
bundles.

{[F7, F16: E4,E17,E44], [F13, F16: E6,E8,E32],
… }

Note that in this case file overlap between file
bundles is possible.

The extension to the bit-sliced index to handle
bundles was quite simple. We only had to have
a separate file vector for each component. First
the predicate is run against the index to generate
a bit-slice as before. Then for each position in
the bit-slice with a 1 in it, we pick the file IDs
for the corresponding components. This forms a
file bundle. We then use a hash map over the
bundle IDs to remove duplicates. To support the
case that different component types reside in the
same file, we simply remove duplicates in the set
of files of each bundle. For example, if the
query has 3 components, and components A and
B of some bundle reside in the same file Fj,
while the component C resides in file Fk, the
bundle found by the index will be (Fj, Fj, Fk).
Removing the duplicate file generates a bundle
with only 2 files (Fj, Fk).

Now, we turn to the main scheduling issue.

4. Bundle Caching Coordination

4.1 File weights and bundle weights

The key to scheduling the caching of file bundles,
and determining what should be in cache at any
one time, is the assignment of weights to files and
to bundles dynamically. Various policies are
possible for assigning the weights, such as the
number of event components in a file, the size of
a file, etc. We chose a simple and intuitive
policy, where the file weight is proportional to the
number of bundles that the file participates in,
summarized over all the queries in the system.

Accordingly, the most “popular” files will have a
higher weight. Intuitively, caching first the files
with higher weights will satisfy the largest
number of queries.

Specifically, the file weight is incremented by 1 if
it appears in a particular bundle of a query. Thus,

if a file appears in 3 bundles for that query, it is
incremented 3 times. The Initial File Weight,
IFW, assigned to a file Fk is obtained by
summing the weight Wij(Fk) over all bundles j of
a query and over all queries i, as shown below:

 ∑∑ ==
queriesin
bundlesall

jbundleinisFif
otherwiseij

queries
all

i j

k
kk FWFIFW 1

0{)()(

For example, if there are 2 queries in the system,
and file Fk appears in 5 bundles for query 1 and 3
bundles in for query 2, then IFW(Fk) = 8.

To account for the dynamic case, we need to
adjust the weight for every bundle that was

processed by some Client. Specifically, after a
bundle is processed by a Client, and the Client
releases it, the system decrements the file weight
by 1 for each file in the bundle that was released.
Thus the Dynamic File Bundle, DFW, is:

 ∑∑ =−=
queriesin

bundles
processed

jbundleinisFif
otherwiseij

queries
all

i j

k
kkk FWFIFWFDFW 1

0{)()()(

Similarly, the DFW of files are dynamically
incremented for each new query request that
arrives to STACS.

The Dynamic Bundle Weight, DBW, is simply
the sum of the weights of all the files in the
bundle.

4.2 Bundle caching policy

Queries are serviced in turn according to some
system policy. The order of servicing queries can
vary according to administrative goals, such as
Round Robin (RR) to be fair to all users, or
Shortest Query First (SQF) to shorten turn around
time for short queries. Care also needs to be
provided that queries are not starved perpetually.
In principle, query service policies can be tuned
to types of users or types of queries based on
priority assignment.

We allow queries to request multiple bundles in a
controlled fashion. Assuming that each Client
uses a single processor, it can only process one
bundle at a time. However, we may still want to
pre-fetch a bundle, so that the bundle is already in
the disk cache when the Client has finished
processing the previous bundle. This is, again, an
administrative choice depending on how loaded
the system is and priorities assigned to users. To
accommodate parallel processing, one can permit
multiple requests per user to be pre-fetched.

Currently, we use the RR policy. Service for a
query is skipped if the query has all the bundles it
requested satisfied (subject to pre-fetching limits)
and it is still processing them.

When it is a query's turn to be serviced, the
system needs to determine which bundle to cache.
We use the bundle weights for this purpose. It is
possible that some bundles of the query may have
one or more files already in cache because
another query is currently using or previously
used those files.

∑=
ibundlein

filesall

k
kFDFWBiDBW)()(

The policy used is to cache the file bundle with
the most files in cache. In case of a tie, the
bundle with the highest weight is selected. In
case that there is no space in cache for the
selected bundle, the next eligible bundle that will
fit the cache is selected.

In addition, as soon as any file is cached, the
system checks if there are any bundles in cache
that can satisfy pending queries as a result of this
file being cached. If such a query is found, the
bundle is passed to it, even if this is out of the RR
order.

To avoid deadlocks, we follow a procedure
similar to 2-phase-commit. First, we verify that
the space is available on disk cache. If it is not
available, we request to remove (purge) one or
more files from disk to make space for all the
needed files in the bundle (i.e. not currently in
cache). When space is allocated, it is "locked
out" (committed). No other query can use this
space.

4.3 File purging policy

File purging policy is the policy that determines
what to release from cache when cache space is
needed. No file purging occurs until space is
needed by some query.

Unlike the file caching policy that is based on
bundle weights, the file purging policy is based
on file weights only. This is to ensure that if a file
is needed by more than one bundle, its purging is
deferred as long as possible.

The current policy is simply to purge the file with
the smallest weight. In case of a tie, the largest
file will be purged to make space for other large
files (an alternative policy for ties is to choose the
file that has been in cache unused for the longest
time).

4.4 Discussion

The technique of assigning file weights and
bundle weights permitted us to use different
criteria for the caching of bundles and purging of
files. File caching for bundles is handled on a
bundle weight basis, ensuring that the most

worthy bundle (the bundle that has the most files
shared by other bundles) is cached first. This
way we can bring about file sharing whenever
possible. On the other hand, file purging occurs
on a file weight basis, keeping files in cache
longer if they are shared between bundles and
are still needed by active queries.

One can consider other file weight policies or
combinations of policies, such as the total size of
a bundle (in MBs), or whether files reside on the
same tape to minimize latency. We chose to
maximize file sharing between queries first. At a
later stage, before the files are actually cached,
we look at the queue of the files that were
requested to be cached, and reorder them
according to tape clustering, as described in
[Bernardo et al 2000].

The techniques and policies described above
have been implemented and incorporated into
STACS. We describe briefly the system
architecture below, and which components were
affected. We follow that with an example of a
log that shows the coordination of bundle
caching in test operation.

5. STACS implementation and
operation

5.1 System Architecture

As shown in Figure 2, STACS has 3 main
components that represent its 3 functions: 1) The
Query Estimator (QE) uses the index to
determine which file bundles and which events
are needed to satisfy a given range query. 2) The
Query Monitor (QM) keeps track of the queries
that are executing at any time, which file bundles
are cached on behalf of each query, which files
are not in use but are still in cache, and which
file bundles still need to be cached. The Query
Monitor consults an additional module, called
the Caching Policy module, which determines
which bundle should be processed next
according to the policies of the system. 3) The
Cache Manager is responsible for interfacing to
the mass storage system (HPSS), issuing PFTP
(parallel FTP) requests, and purging files from
the disk cache when space is needed.

 Figure 2. The Storage Access Coordination System (STACS)

The Cache Manager controls the rate of PFTP
(parallel file transfers) submission to HPSS, so
as not to flood it. The number of active PFTPs is
set as a parameter that can be changed
dynamically by the system administrator. To
perform this function, the Cache Manager
maintains a queue of file caching requests. It
consults a file catalog in order to know where to
move the cached file (i.e. which directory on
disk). It also monitors the performance of each
PFTP, checking for error messages, and
rescheduling caching requests that failed. The
details of the functions performed by this
component and its implementation are described
in [Bernardo et al 2000].

The communication between the STACS
components and the Client modules are made
through CORBA interfaces. The Client modules
communicate with STACS by issuing query
requests, asking for estimates of the numbers of
events and files involved, and the time to execute
the query. After issuing an execute request, the
Client can get information about the remaining
time and files that need to be cached to complete

the query. All the communication to the STACS
modules must support multi-threading, since we
need to support multiple queries and multiple
bundle and file processing concurrently. Our
experience with using multi-threaded CORBA
ORBs is described in [Sim et al 99].

5.2 The Query Monitor operation

In addition to the changes made to the Query
Estimator and the bit-sliced index to handle
bundles, most of the changes required to support
file bundles were made to the Query Monitor and
the Caching Policy module.

The Query Monitor maintains the query queue,
and bundle and file status as shown in Figure 3.

The query queue is used for the round robin
service of the queries. If a query is busy
processing, it is skipped. Each query points to
its set of bundles. Bundles are marked whether
they have been processed, whether they are
currently in process, or whether they are waiting
to be processed. Each bundle has a bundle

PFTP commands
and file purge commands

Query
Estimator

Cache
Manager

Query
Monitor

 Bit-
sliced
index

Caching
Policy
Module

 Query
 status,
 cache
 map

 File
Catalog

 Queries

Selected
file bundle

and Event lists

 Estimates

Requests
for file caching

and purging

File bundles
and events

weight associated with it, that changes
dynamically as bundles are processed, and as
new queries enter the system. The bundle
weights are used to determine which bundle to
process next for the query being serviced.

Each bundle points to a set of files that it
contains. As explained above, the file weights
are used to determine which file(s) to remove
from the disk cache if space is needed. The
system also maintains information on the set of

files currently being processed, and therefore
cannot be considered for removal from cache.
The set of files in cache which are not currently
in use are candidates for removal from cache.
As mentioned above the current policy used
when space is needed is to remove a file not
currently in use that has the lowest weight.
Another reasonable policy is to remove the “least
recently used” file (the file that has not been read
the longest time), but we found it easier to use
the weight as a guide.

Figure 3. Queues and lists maintained by the Query Monitor

A typical sequence of events that the Query
Monitor (QM) goes through for each query is
shown schematically in Figure 4. The Client
initiates a query by communicating with the QE
(not shown in the figure below). The QE
determines the set of bundles and events in each
bundle that qualify for the query and issues an
“execute” command to the QM. The QE then
notifies the Client that it can start requesting
bundles.

After an "execute" command is issued (1), the
Client notifies the QM that it is ready to receive
a bundle (2). The QM consults the Policy
Module to determine which bundle to process

next (3). Depending on the result (4), it may
need to request files that are not in cache from
the Cache Manager (5). When all the requested
files are staged (6), it notifies the Client that it
can begin processing (7). After a bundle is
released by the Client (8), the QM marks it as a
candidate for removal if no other query is
processing this file. If space is needed, the QM
requests that the selected file(s) be removed (9).
When this is done (10) the QM can continue
with its scheduling of bundles to be processed.
This process repeats until all the bundles of a
query are processed, at which time the query is
removed from the query queue, and its
associated bundles removed from the bundle set.

.

..
.
..

.

..

.

..

.

..

Query
Queue

Bundle
Set

File
Set

Files
Being

Processed

Files
in Cache

Figure 4. The sequence of operations that follow an execute command

Finally, we note that the design of the Query
Monitor and the bit-sliced index make no
assumptions on the number of files per bundle,
or whether the event components are stored in a
separate or the same file. Therefore, the system
can be used for any simultaneous file caching
requirements, for HEP data or other applications.

5.3 Monitoring the dynamic system operation

The graph in Figure 5 was drawn from the actual
logging of a test run. The method of displaying
the runs is based on a visualization tool
developed at LBNL (called NetLogger
[Netlogger Web]) that was applied to show the
progression of actions over time. The graph
represents the occurrence of logged actions
(stretched out in the y-axis) over time (the x-
axis). There are five logged actions shown from
bottom to top: a) the file_request arrived (to
HPSS), b) file_staged from HPSS-tape to HPSS-
cache, c) File_in_cache (i.e. all the files of a
bundle were moved over the network to the
Client’s local disk), d) file_retrieved by the
Client, and e) file_released by the Client. Thus,
a vertically connected (crooked) line represents
the history of a single file from the time of
request to the time of its release by the Client
component.

Figure 5 illustrates the coordination of file
caching according to bundles. In this test, we ran
2 queries, each with 3 components, 15 minutes
apart. The number of bundles required for each
query is large, but the figure shows only a short
time window where only a few bundles per query
are shown. Each bundle has 3 files corresponding
to the 3 components requested in the query. As
can be seen, only after the 3 files of a bundle were
cached, was the bundle passed on to the Client.
Further examination of the graph shows that files
were shared by the 2 queries when they were in
common in these queries' bundles, and that files
were left in cache when they were in common
with other bundles.

We have used this method of graphing the
dynamic behavior of the system to verify that it
performed correctly. We can tell in this graph if
a file was brought in from the robotic tape or
passed to the application directly from cache.
For example, the third bundle shown in the graph
from left to right belongs to the second query.
As can be seen the line starts from
"file_in_cache", which indicates that all the files
for this bundle were in cache because they
overlapped the first query.

Query Estimator

Client Query Monitor Policy Module

Cache Manager

3

4

1 execute

2 request

whichBundleToCache

BundleID ToCache

5
stage

6
staged

7 retrieve

8 release

9
purge

10
purged

 first query second query
 starts here starts here

Figure 5. Monitoring the caching of file bundles

6. Summary and future work

The technique of assigning file weights and
bundle weights permitted us to use different
criteria for caching of bundles and purging of
files. File caching for bundles is handled on a
bundle basis, ensuring that the bundle that has
the most files shared by other bundles is cached
first. This way we can bring about file sharing
whenever possible. File purging occurs on a file
weight basis, keeping in cache as long as
possible files that are shared between bundles
and are still needed by active queries.

As mentioned several times in this paper, one
can consider other file weight policies. We
chose to give files weights that represent file
sharing. Using these weights tends to maximize
file sharing between queries. At a later stage, we
look at the queue of the files that were requested,
and reorder the caching of files according to tape
clustering.

Proving which policy works best is a very
difficult task. One can try different policies on
the real system, but for such tests one has to have

full control of the mass storage system and the
content of the cache. Such systems (e.g. HPSS)
are usually shared by other users, so any
measurements will be effected by the load of the
system at the time it is measured. Still, it is
important to compare how the weight policy we
use performs relative to simple policies such as
"least recently used" for removing files from the
cache.

 Another possibility is to model the behavior
with a system of queues, and assume certain
distributions to query arrivals, and bundle
requirements per query. One can then simulate
the behavior of the system under various
policies. We plan to attempt this form of
analysis in the future, first for queries with a
single component (i.e. only one file per bundle),
and then to queries with more than one file per
bundle.

References

[Shoshani et al 99] Multidimensional Indexing
and Query Coordination for Tertiary Storage
Management, A. Shoshani, L. M. Bernardo, H.
Nordberg, D. Rotem, and A. Sim, Eleventh
International Conference on Scientific and
Statistical Database Management (SSDBM'99).
(This paper can be downloaded from
http://gizmo.lbl.gov/~arie/papers/download.pape
rs.html).

[Bernardo et al 2000] Access Coordination of
Tertiary Storage for High Energy Physics
Application, L. M. Bernardo, A. Shoshani, A.
Sim, H. Nordberg, Eight IEEE Symposium on
Mass Storage Systems (MSS 2000). (This paper
can be downloaded from
http://gizmo.lbl.gov/~arie/papers/download.pape
rs.html).

[NASA Web] Destination Earth,
http://www.earth.nasa.gov

[Netlogger Web] NetLogger: A Methodology for
Monitoring and Analysis of Distributed Systems,
http://www-itg.lbl.gov/DPSS/logging/.

[Sim et al 99] Storage Access Coordination
Using CORBA, A. Sim, H. Nordberg, L. M.
Bernardo, A.Shoshani, D. Rotem, 1999
International Symposium on Distributed Objects
and Applications (DOA'99). (This paper can be
downloaded from
http://gizmo.lbl.gov/~arie/papers/download.pape
rs.html).

[STAR Web] The STAR Collaboration,
http://www.rhic.bnl.gov/STAR/ . See also,
STAR Computing Software,
http://www.rhic.bnl.gov/STAR/html/star_compu
ting.html

