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Abstract

In many scientific domains, experimental devices
or simulation programs generate large volumes
of data. The volumes of data may reach
hundreds of terabytes and therefore it is
impractical to store them on disk systems.
Rather they are stored on robotic tape systems
that are managed by some mass storage system
(MSS). A major bottleneck in analyzing the
simulated/collected data is the retrieval of
subsets from the tertiary storage system. In this
paper we describe the architecture and
implementation of a Storage Access
Coordination System (STACS) designed to
optimize the use of a disk cache, and thus
minimize the number of files read from tape.  We
achieve this by using a specialized index to
locate the relevant data on tapes, and by
coordinating file caching over multiple queries.
We focus on a specific application area, a high
energy physics data management and analysis
environment. STACS was implemented and is
being incorporated in an operational system,
scheduled to go on-line in the end of 1999.  We
also include the results of various tests that
demonstrate the benefits and efficiency gained of
using the STACS.

1.  Introduction

Today, the term "a large dataset" refers to
hundreds of terabytes or even petabytes of data.
While datasets of hundreds of gigabytes can be
managed by large disk caches, it is too costly
(and will continue to be so for the foreseeable
future) to store petabytes of data on disk caches.
Many scientific and business domains generate
very large volumes of data that are stored on
tertiary storage, typically robotic tape systems.
Some examples are large scale simulations for
climate modeling, combustion modeling, high
energy and nuclear physics (HENP) experiments
and satellite data.  In such applications, one of
the major bottlenecks in analyzing the
simulated/collected data is the retrieval of

subsets from the tertiary storage system.  This
bottleneck results from the fact that the requested
subsets are spread over many tape volumes,
because the data are stored as files on tapes
according to a predetermined order, usually
according to the order they are generated.  In this
paper we describe the architecture of a Storage
Access Coordination System (STACS).  The
system uses a specialized bit-sliced index to
locate the data that need to be read from tape
files.  This information is used to coordinate file
caching for multiple queries, thus minimizing the
number of files read from tape.

To explain the details of the system we
developed, it is necessary to provide some
background on this application area.  HENP
experiments consist of accelerating sub-atomic
particles to nearly the speed of light and forcing
their collision.   A small part of the particles
collide and produce a large number of additional
particles. Each such collision (called an “event”)
generates in the order of 1-10 MBs of raw data
collected by a detector.   The rate of data
collection for the HENP experiment we are
addressing, called the STAR collaboration [1], is
a few such event collisions per second, or about
10 MB/s on the average.  This corresponds to
107-108 events/year, and the total data volume
amounts to about 300 TBs per year.  This
corresponds to 10,000 30 GBs tapes, which is the
reason for the use of a robotic tape system.  A
typical experiment may run for 3 years.

After the raw data are collected, they undergo a
“reconstruction phase”.  Each event is analyzed
to determine the particles it produced and
summary properties for each event are generated
(such as the total energy of the event, momentum
and number of particles of each type).  The
number of summary elements extracted per event
is typically quite large (100-200).  The amount
of data generated after the reconstruction phase,
ranges from a tenth of the raw data to double
that, which amounts to about 30-600 TBs per
year.  Most of the time only the reconstructed



data are needed for analysis, but the raw data
must still be available.

Events are organized into files, normally about 1
GB each.  The reason for this size is that the
mass storage system, which in our case is called
HPSS (http://www.sdsc.edu/hpss/) – High
Performance Storage System developed by IBM,
operates more efficiently with large files.
However, we do not wish to make files too big,
since too much unneeded data may be read.  In
[2] we have analyzed the optimal file size, and
determined that a 1GB size is a reasonable
compromise.  We note that for our purposes, we
use the term “event” as equivalent to the “chunk
of data” stored for that event.

Figure 1 shows a real example of data values for
one such event for 54 properties.
Note that some of the properties are integers
(preceded by “I”), and some are real numbers
(preceded by ”R”).  Thus, for 100 properties and
108 event this property space is about 20-40 GBs.
Searching this property space is a major
challenge.  As we’ll discuss in Section 5, we had
to build a specialized index to be able to search
this space efficiently.

Incidentally, the names of the properties are
meaningful to physicists. For instance, Npip(3)
stands for number (N) of pions (pi) positively
charged (p = plus) and the 3 refers to the 3rd
component (z-component).  Similarly, NPbar(1)
means the number (N) of anti-protons (pbar) and
the 1 refers to the 1st component.

A typical analysis that physicists wish to perform
on the reconstructed data involves the selection

of some subset of the events according to some
conditions over the summary information. An
example of such a query is given below:

Query predicate: ((0.1 < AvpT(1) < 0.2) AND
(100 < Npip(3) < 300)) OR (N(1) > 6000)

As can be seen, this is a “partial range query” in
that the conditions on the properties are range
conditions, and the query only specifies
conditions on part of the properties (3 out of 54
in this example).  The events that qualify for this
query may be spread over many files and over
many tapes.  It is therefore essential to be able to
determine ahead of time where these events are
on tapes.  One of the challenges we faced was to
develop an efficient index over the large number
of properties (100-200) and the large number of
objects (108 events).

2.  Optimization opportunities

The architecture of the Storage Access
Coordination System (STACS) was designed to
take advantage of aspects of the physics analysis
that can improve the system performance.  We
refer to them as “optimization opportunities”.
Before we proceed we note that each file stored
on tape usually contains many events (about
200-300 events per 1 GB file).  For a given
query, only a subset of the files needs to be
accessed, and only a fraction of the events in
each file is needed for the query.  If no attention
is paid to what goes into a file, which is the case
when the events are stored in the order they are
generated, then that fraction is small, typically
less than 10% of each file is used by a query.

I  N p(3) 24
I  N p b a r(1) 94
I  N p b a r(2) 12
I  N p b a r(3) 24
I   N S E C ( 1 )  1 5 6 0 7
I   N S E C ( 2 )  1 3 4 2
I  N S E C p i p (1) 638
I  N S E C p i p (2) 191
I  N S E C p i m (1) 728
I  N S E C p i m (2) 206
I  N S E C k p(1) 3
I  N S E C k p(2) 0
I  N S E C k m (1) 0
I  N S E C k m (2) 0
I  N S E C p(1) 524
I  N S E C p(2) 244
I  N S E C p b a r(1) 41
I  N S E C p b a r(2) 8

I   N(1 )  9965
I   N(2 )  1192
I   N(3 )  1704
I  N p i p (1)  2443
I  N p i p (2) 551
I  N p i p (3) 426
I  Np im (1) 2480
I  Np im (2) 541
I  Np im (3) 382
I  N k p (1) 229
I  N k p (2) 30
I  N k p (3) 50
I  N k m (1) 209
I  N k m (2) 23
I  N k m (3) 32
I  N p(1) 255
I  N p(2) 34

R   A V p T (1)  0 .325951
R   A V p T (2)  0 .402098
R   A V p T p i p (1)  0 .300771
R   A V p T p i p (2)  0 .379093
R   A V p T p i m (1)  0 .298997
R   A V p T p i m (2)  0 .375859
R   A V p T k p(1)  0 .421875
R   A V p T k p(2)  0 .564385
R   A V p T k m (1)  0 .435554
R   A V p T k m (2)  0 .663398
R   A V p T p(1)  0 .651253
R   A V p T p(2)  0 .777526
R   A V p T p b a r(1)  0 .399824
R   A V p T p b a r(2)  0 .690237
I   N H I G H p T (1) 205
I   N H I G H p T (2) 7
I   N H I G H p T (3) 1
I   N H I G H p T (4) 0
I   N H I G H p T (5) 0

            Figure 1: 54 Properties for one event. (There are 108 events per year.)



2.1  File caching order

Given a query that has objects (events) in
multiple files, it is necessary to determine what
order to cache the files that qualified for that
query.  In the case of physics data, each event is
independent of another, and therefore analysis
can proceed as soon as any file is cached.  (This
is similar to extracting data for an OLAP
database to perform some statistical operation).
The order of processing the files is irrelevant to
the application.  Having the freedom to choose
which file to cache gives us an advantage.  For
example, the user may abort a query after he/she
analyzes some fraction of the data.  For such
cases, it is better to cache first the files that have
the largest number of events that qualify for the
query, since the partial analysis will access fewer
files.  Another consideration for file caching
order is to prefer files that have the larger
number of queries needing them, or files that are
smaller in size. In the current implementation,
we have chosen to cache files that are needed by
the largest number of queries, so that these
queries can proceed as soon as the file is cached.

2.2  Multi-query overlap

Another opportunity for access time
improvement is to share files in cache to
whenever possible.  Given a query, we can use
an index over the properties associated with each
object (event), in order to determine which
events qualify for the query and which files they
are stored in.  Thus, we can determine the files
that are needed for each query in advance.  If any
of these files are in cache because another query
is using them, we can immediately make these
files available to the new query.  This strategy
pays off well if the set of queries overlap, which
is the case if several investigators are working on
similar phenomena.  Indeed, it is the current
practice in the HENP community to extract small
pre-selected subsets (called micro-DSTs) based
on some features to be used by several
collaborators.  These subsets are stored for the
long term on disk cache for their joint
investigation.  The extraction of these subsets is
performed by full scans over the data. However,
this practice has its limitations in that only a
relatively small number of such subsets can be
cached, and it is impractical to wait for a full
scan of the data when other ad-hoc subsets of the
data are needed.  In order to extract ad-hoc
subsets, it is essential to have an index over the
properties of all events.

2.3  Query estimation

Retrieving large subsets of data from tape-based
datasets is very expensive both in terms of
computer and system resources, and in the length
of time for a query to be satisfied.  Therefore, it
is quite useful to provide an estimate of the
amount of data and the number of files that need
to be retrieved for a potential query.  Often, users
start a query, get frustrated with the length of
time to perform the analysis, and abort the query.
An important optimization strategy is to prevent
such non-productive activities by providing a
quick estimate of the size of the requested data,
and a time estimate of how long it will take to
retrieve the data.  As is discussed below we
designed and developed such a “query estimator”
using the same index that evaluates a query.

2.4  Minimize tape mounting

Another opportunity for optimization is to read
files from the same tape for the set of queries
currently in the system whenever possible.  This
strategy is partially performed by the mass
storage system we are using – HPSS.   When
multiple file transfers are requested, HPSS
chooses to transfer files from tapes that are
already mounted regardless of the order they
were requested.  However, a storage
coordination system can take advantage of
knowledge of file location for all the files needed
by queries, and schedule files to be cached based
on their co-location on tapes.

3.  The STACS Architecture

The STACS is responsible for determining, for
each query request, which events and files need
to be accessed, and for scheduling the caching of
files from tape to disk cache. A specialized index
(a compressed bit-sliced index, that will be
described in the next section) is used for quick
(real-time) estimation of the number of events
that qualify given a query.  The SM has 3 main
components that represent its 3 functions.  1)
The Query Estimator, which determines what
files and what events are needed to satisfy a
given partial range query. It uses the index to
perform a quick estimation, as well as generating
a precise list of events and files for query
execution.   2) The Query Monitor, which keeps
track of what queries are executing at any time,
what files are cached on behalf of each query,



what files are not in use but are still in cache, and
what files still need to be cached. The QM
consults an additional module, called the caching
policy module, that determines what file to cache
next according to the policies selected by the
system administrator.  3) The Cache Manager,
which interacts with the mass storage system
(HPSS) to perform staging of files, and purges
files from the disk cache when space is needed.

STACS interfaces to other components of the
system.  While we only concentrate here on the
storage coordination function, it is important to
understand how it interfaces to the rest of the
system.  Figure 2 shows the system components
and the interaction between them.  On the right
are the three components of STACS.  On the left
there are two components: 1) the Query Object,
which is the component that initiate the query,
and passes the events one by one to the analysis
program, and 2) the Event Iterator, which is the
component that reads the events one by one from
the file system. In addition, the diagram shows
the mass storage system (HPSS) and the file
system (UNIX).

The labels on the arcs are intended to show the
type of messages sent between the components
(via CORBA interfaces).  In order to appreciate
the value of a modular design that makes such a
complex system manageable, we discuss below
the steps taken by the system in order to process
a query.

1) A “query estimation request” is sent from
the Query Object  to the Query Estimator
(QE).  The QE uses its index to estimate the
total number of events that will result from
such a query, the number of files involved,
and how long it will take to process this
query.  Note that even small queries
involving 10s of files take many minutes to
hours to download from tape and process.
Query estimation can also be used by the
system to prevent the users from proceeding
large queries if they do not have proper user
permissions to perform such large queries.

2) If the user decides to proceed, he/she issues
an “execute” command to the QE. The QE
uses its index to generate a set of files that
the query needs to access, as well as a set of
object_IDs for the events that qualify for the
query.

Storage Access Coordination

Query
Estimator

Cache
Manager

Query
Monitor

  Bit-
sliced
index

  cache
  & files
   tables

 Query estimation request
 Query execution request
       (full estimate)

Purge a file

         Request next file
(multiple requests supported)

Query
Object

Event
Iterator          Done with file

File System

HPSS

 Done, Abort

Cache a file

  Query
  status,
  cache
    map

Caching
Policy
Module

  large
  disk
  cache
  

Figure 2: The architecture of the storage system and its
interaction with other system components



3) The Query Object then starts an Event
Iterator module that issues one or more “get
next file” requests to the Query Monitor.

4) The QE passes the (file, object_IDs) request
to the Query Monitor (QM).

5) The QM adds the query to its “query
queue”.  When it is the query’s turn to be
serviced, the QM needs to determine which
file to give the query next.

6) The QM checks what is in the cache.  If a
file is found for the query, it is selected, and
“locked” into cache.  A counter is used to
mark how many queries have a lock on the
file.  If no file is found in cache, the Policy
Module selects a file to be cached from tape
according to its policy.  If necessary, it also
selects which unused files to remove from
cache to make room for the new file.

7) If a file has to be read from tape, the QM
requests the Cache Manager (CM) to cache
that file.  The CM requests the caching of
the file from the (HPSS) mass storage
system (currently via parallel FTP), and
monitors its progress.  When the file is
cached, the QM is notified.

8) The QM passes the Event Iterator the
file_ID along with the set of Object_IDs for
events in this file that qualify for the query.

9) When the Event Iterator is finished
processing all the events in a file, it issues a
“done with file” message to the QM.  The
QM then makes the query “active” and
services it in its turn.

10) When all the files requested by a query are
processed, the QM notified the Event
Iterator that there are no more files, and this
causes the Query Object to terminate the
query, by issuing the “done” message to the
QE.  The whole process can also be stopped
with an “abort” message from the Query
Object.

4. The caching policies

Cache management is a complex problem.
Although it has been studied in the context of
memory management for files cached from disk,
the problem of caching files from tape to disk is
different in several respects: 1) files have to be
read in their entirety, not one “page” at a time; 2)
the cost of reading a file from tape is so high
(can be up to 2-3 minutes, depending if the tape
is mounted) that the most important thing to
optimize is the sharing of files by multiple
queries whenever possible.

We have addressed this problem by separating
the “policy module” from the mechanism that
runs the queries (the QM), and broke the policy
decisions into 5 aspects as follows.

1.  File weight policy

File weights can be assigned on the basis of
various criteria, such as: a) the number of events
per file that qualify for a query, b) the number of
queries in the query queue that need the file, or
combinations of these.   Initially, we have chosen
the criteria a) because it helps minimize the
number of files cached for aborted queries.
However, we are now favoring b) since the file
weight can be used to keep files in cache that are
needed by other queries.

2. Query service policy

The QM keeps a queue of all queries according
to their arrival time.  The order of servicing
queries can use various policies, such as Round
Robin (RR) or Shortest Query First (SQF).  Care
also needs to be taken that queries are not starved
perpetually. For example, a query may be
skipped if not enough space is found in the cache
for any of its  files.  In principle, query service
policies can be tuned to types of users or types of
queries based on priority assignment.  The
default policy we are using is RR.  Service for a
query is skipped if the query has all the files it
requested in cache (subject to pre-fetching limits
– see below) and it is still processing them.

3. File caching policy

The file caching policy determines which file to
cache when it is a query’s turn to be serviced.  If
a file is found in cache, it is selected.  Otherwise,
the selection is based on the “file weight”.  The
policy we are using is to pick first the file with
the highest weight.  If no space is found for that
file, we select the file with the next highest
weight, etc.  We note here that the file caching
policy can also prefer the caching of files that are
on the same tape as recently requested files.
This will tend to minimize the number of tape
mounts.  Note that this policy may conflict with
caching files that are shared by a large number of
queries.  We have not attempted so far to
combine these two policies.



4. File purging policy

The file purging policy is the policy that
determines what to release from cache when a
file is requested and cache space is needed.  No
file purging occurs until space is needed by some
query.  The policy is based on the “file weight”
of the files in cache. The default policy is simply
to purge the file with the smallest weight.

5. Pre-fetching policy

This policy states how many files will be pre-
fetched for a query.  For example, if this number
is set to 2, then each query can have only 2 files
requested at any one time.  For these 2 requests,
the system will either schedule a file caching
from tape, or if the file is already in the cache, it
is locked till the query processed it. If a high
level of parallel processing on multiple files is
anticipated, this parameter should be high.
Incidentally, a pre-fetching number can be
associated with a user’s priority or even with
each query.  The current policy is to limit this
parameter to 2, so that by the time a query
finishes processing one file (can take from
seconds to many minutes) another file will
already be in the disk cache.

By separating the policy decisions into these 5
components, we can more easily control the
policies and compare their effect on actual
processing of data.  We have begun simulation
analysis as well as formal analysis of the
problem, but have no results to report yet.  We
also instrumented the various modules to keep
track of the behavior of the system.  This will be
discussed further in the section on tests
performed.

5.  The bit-sliced index

In this application, we are faced with indexing a
very high dimensional space (100-200) over 100-
500 million objects.  Let’s assume that we have
100 properties and 108 objects.  This can be
viewed as indexing a table 108 long and 100
wide.  Each row represents an object with 100
values for its properties (columns).  The index
must respond to any range query over any subset
of the properties.

It is well known that multi-dimensional indexes,
such as Quad-trees and R-trees, do not scale to a
high number of dimensions [3].  This is referred
to as the “curse” of high-dimensionality.  At best

they scale up to 7-8 dimensions.  In addition,
these indexes work best with a full specification
on all dimensions.  Performing partial range
search (say on 2 dimensions out of 7) results in
having to read most of the index, which can be as
bad as a sequential scan.  One can choose to
represent the 100 dimensional space in subsets of
domains, say 7 at a time.  However, searching
any subset of the dimensions that do not fall in
the same subset results in having to take
intersections of the partial searches.  Again, for
partial range queries this adds to the inefficiency
of these methods.

A recent paper [4] describes a technique, called
the Pyramid-Technique, that partitions the d-
dimensional space into 2d pyramids, and each
pyramid is further partitioned into slices parallel
to the base of the pyramid.  This technique is
shown to work best for data that is not skewed
(random is best), and for the full hypercube
queries (i.e. range conditions in all dimensions).
Their experimental data shows that when the
number of dimensions is small (i.e. 1-5 out of
100) the performance is close to sequential scan.
Our requirements are on the opposite end of the
spectrum: the data is skewed (that is the
dimensions are correlated – such as the energy of
an event collision and the number of particles
generated), and the queries specify range
conditions over a small number of dimensions.

Our approach was to take advantage of three
aspects of this application.

1) The database, and, therefore the index are
“read-only”.  Therefore we do not need an
index that can be modified or updated.   In
reality, this database is “append-only”, and
for our application the index needs to be
extended with periodic appends.

2) Since the number of properties specified in
each query is relatively small (1-5 out of
100), a “vertical partitioning” method over
the index can be used, so that only the
partitions for the properties in the query are
accessed.

3) The queries are predominantly range
queries.  As we will see, the index method is
particularly suited for such queries.

We note that the above conditions are not that
unusual in that they apply to other
multidimensional database analysis
environments, such as OLAP.



We describe next the principles guiding the
index design.
We assume that the objects are stored in a certain
order in the index, and this order does not
change.  We first generate vertical partitions for
each of the 100 properties. The partitions are
stored on disk.  Now, the bit-sliced index is
designed to be a concise representation of these
partitions, so that it is much smaller and can be
stored in memory.  The details are explained
next.

Since the properties we deal with are numeric,
we can partition each dimension into bins.  For
example, we can partition the “energy”
dimension into 1-2 GEV, 2-3 GEV, and so on.
(For categorical data, one or more categories can
be assigned to bins).  We then assign to each bin
a bit vector, where a “0” means that the value for
that object does not fall in that bin, and “1”
means it does.  Figure 3 shows an example
where Property 1 was partitioned into 7 bins,
Property 2 into 5 bins, etc.  Note that only a
single “1” can exist for each row of each
property, since the value only falls into a single
bin.

This in itself does not bring to a significant
concise representation.  In fact, the total size may
be larger than the partitions if the number of bins
is large.  For example, if the property values are
integers (i.e. represented with 16 bits), and we
partition the property into 20 bins, then the space
for the 20 bit slices will be larger than the
vertical partition of the integer values.  However,
we achieve a more concise representation by
compressing the vertical bit-vectors.  There is a
large number of compression methods one can

choose form, but as was pointed out in [5], it is
advantageous to select a method that would
permit boolean operations between the
compressed vectors.  That is, we wish to apply
boolean operations on the bit-slices without
decompressing them.  We chose a modified
version of run length encoding.  A run-length
encoded sequence simply stores the count of
sub-sequences of 0’s or 1’s.  The longer the “0”
(or “1”) runs the better the compression.  For
data that is highly skewed, as is the case for High
Energy Physics data, the compression factor is
high.  Obviously, it is wasteful to store counts
for short sequences.  There are several variations
of run-length encoding [6] that avoid counts for
short sequences.  The version we chose, avoids
encoding short sequences into counts, by simply
representing them as-is. We use 4 bytes
segments for the counts, or as-is sequences.  The
high order bit in each 4 byte segment determines
what each segment represents, a count or the
actual bit sub-sequence. An additional bit is used
to indicate whether the count is for a 0’s or 1’s.

Tests performed with real physics data show a
compression factor of about 10.  In one such test,
we had 10 million rows and 70 properties
(columns) where most of the values were real
numbers.  The total space required was about 2.5
GB.  We partitioned each property into 20 bins.
The total space for the compressed bit-sliced
index was 280 MBs, or 4 MBs per property.  For
comparison purposes, we stored the 10 million x
70 table as a relation in Oracle, and indexed all
70 columns.  The total space required by Oracle
for the indexes was 9 GBs or about 120 MB per
property.
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Figure 3: bit-slice representation of the vertical partitions



The choice of the number of bins and their
boundaries is an important issue, but the main
advantage to our method is that it is not
necessary to keep all the bit slices in memory.
We can bring from disk only the bit slices
needed for the range conditions and keep in
memory only the most popular “working set”.

5.1 Logical operations on bit slices

The compression scheme described above,
permits logical operations on the compressed bit-
slices (bitmap columns).  This is an important
feature of the compression algorithm used, since
it makes it possible to do the operations in
memory.  These operations take as input two
compressed slices and produce one compressed
slice (the input for “negation” is only one bit-
slice).

All logical operations are implemented the same
way:
• The state ["0" or "1"] at the current position

and the number of bits of the current run
(number of consecutive bits of that same
state), 'num', from each bit-slice, are
extracted (decoded).

• The result is created (encoded) by
performing the required logical operation
(AND, OR, XOR) on the state bits from
each bit-slice and subtracting the smaller
'num' from the larger and appending the
result to the resulting bit-slice.  The resulting
bit-slice is encoded as we go along, using
the most efficient method for the size of its
run lengths.

An example: pseudo code for logical or.

function bmp_or( bitslice left, bitslice right )
{
        while( there_are_more_bits(left) and
        there_are_more_bits(right) )
        {
                lbit = decode( left, lnum );
                rbit = decode( right, rnum );
                result_bit = lbit | rbit;
                result_num = min( lnum, rnum );

                lnum = lnum - result_num, rnum =
                rnum - result_num;
                encode( result, result_bit, result_num );
        }
        return result;
}

This compressed bitmap index is used by the
Query Estimator in two important cases.  First, it
is used when we need to quickly get an estimate
of the number of hits for a query. We can give a
quick answer, by giving a maximum and
minimum number of hits. The minimum is given
by the number of events that fall in bins that are
covered entirely by the range query. In Figure 4,
the dark rectangle shows the region covered by
the range query.  Range(x) shows 3 bins that are
fully covered, and 2 “edge bins” that are partially
covered.  Range(y) falls on bin boundaries and
therefore all its bins are fully covered. The
maximum is determined by adding the minimum
number of events plus those in the two edge bins.

The second usage of the bitmap index is for a
precise lookup. Such a lookup is needed when
we execute a query. In this case we first find the
events we know will satisfy the query. Again,
those are the events in bins fully covered by the
range of the query. For the events in the edge
bins, we need to do a lookup in the full, disk
resident, index. But, we only need to access the
disk for the events in the edge bins. Note that
there are at most 2 edge bins per dimension to
lookup, in case that the range condition does not
fall on a bin boundary. The disk access will
require only one seek per event (in edge bins);
we don't need to read more data than exactly for
those events.

A range condition is performed with an "or"
operations on all the bins involved.  For queries
involving several attributes, we perform bitmap
index lookups for each of them and then do the
final boolean logic (most often “and”) on the
resulting, compressed, bit-slices.

Figure 5 illustrates the index operation.  As
shown on the left, a conjunctive range query can
be viewed as a (multidimensional) rectangle on
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Figure 4: Edge bins are bins that are
partially covered by the range condition



top of the grid. For the bins that are fully covered
by the query the bit-sliced index is used directly
for the result. For the edge bins the vertical
partitions need to be checked for each of the
dimensions.  This technique minimizes the
access to the full vertical partitions, resulting in a
large gain in performance.

To summarize, we gain efficiency by using the
bit-sliced index because:
1) we search only  the dimensions in the query;
2) for each dimension we use only the bit-

slices that the range specification spans;
3) for these dimensions we get all the qualified

objects of fully covered bins directly from
the bit-sliced index;

4) we need to check the disk resident vertical
partitions values only for events in edge bins
for the dimensions in the query.

6. Real time tests

The system has been tested in a real
environment.  While running the test, we logged
various events, such as when a request was made
for caching, when a file was cached, and when a
file was passed to the analysis code.  By plotting

the behavior of different tests we could not only
confirm the correct behavior of STACS, but also
see the value of using an index to determine the
entire set of files that queries need ahead of time.
By doing so, we could share files in cache, and
prevent files from being removed from cache if
they are needed by other queries at a later time.

The graph shown in Figure 6 illustrates the value
of file sharing in cache.  We started with an
empty cache.  We ran 3 queries: the first needing
8 files that were cached from tape to disk; the
second also needed 8 files, but 4 of them are in
common to the first query; the third also needed
8 files, but 6 of them are in common to the first
and second.  We then ran all three queries
concurrently.  The entire test ran for about one
hour.

The graph in Figure 6 was drawn from the actual
logging of the test run.  The method of
displaying the runs is explained below.  It is
based on a visualization tool developed at LBNL
(called NetLogger [7] ) that was applied to show
the progression of events over time.
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Figure 5: the use of the bit-sliced index for partial range queries



The graph represents the occurrence of logged
events over time (the x-axis), but spreads out
various logged events in the y-axis.  In this
graph, six logged events are shown from bottom
to top: a) request_arrived (to HPSS), b)
transfer_start (from HPSS-cache to local cache),
c) stage_finished, d) file_pushed (i.e. file is
available for the Event Iterator), e) file_retrieved
(by the Event_Iterator), and f) file_released.

We note that:
-- The time between a) and b) is the time to get
the file from Tape to HPSS-cache.
-- The time between b) and c) is the time to
transfer the file from HPSS-cache to local cache.
-- The time between c) and d) is the time needed
for the file to be passed to the EI after it was
cached.  This should normally be practically
immediate.
-- The time between d) and e) is the time
between making a file available to an EI and the
time it actually reads it.

-- The time between e) and f) is the time that it
takes the analysis code to process all the events
from that file.

Thus, a jagged vertically connected line
represents a single file and chronicles how it was
processed.  The graph shows that when Query 1
started, two file requests were made.  The first
file took several minutes to cache, and was
passed to the query for processing.  The file was
processed for several minutes, and only when the
query finished and released the file, a new
request was made, reflecting the two file pre-
fetching policy.  The first query cached 8 files
and processed them.  When Query 2 was
launched, the query was handed first the 4 files
that were in cache.  This can be seen from the
short vertically connected lines starting at
“FILE_PUSHED” line (reflecting that they did
not have to be cached again).  The remaining 4
files had to be cached.  Thus, the second query
ran in almost half the time.  Similarly, Query 3
shared 6 files from cache and cached only two.
Finally when all three queries ran

query1
start

query2
start

query3
start

All 3
queries

Figure 6: Display of a test run showing file sharing in cache



simultaneously, all the files where shared from
cache, and the total processing time for all
queries was quite short.  This test validated the
correctness of the performance of the software,
as well as the benefits of file sharing.

7.  Implementation Issues

The system is implemented in C++ on a UNIX
platform.  One of the more challenging
implementation issues we encountered was
module interconnections. Since it may be
advantageous to have each component of
STACS reside on a different machine (e.g., the
Cache Manager may be on the same machine
that support the Mass Storage System), we chose
to use CORBA for interfacing between the
modules.  A critical issue was that each of these
components needs to deal with multiple requests
concurrently, so we needed to use an ORB that
supports multi-threading.  This limited us with
the choice of such products.  Another aspect that
we have not checked thoroughly is passing very
large objects sets with CORBA.  If this is not
handled properly we may be forced to cut large
objects into smaller chunks.

8. Lessons learned

1. The ability to use an index over the 108

objects is extremely valuable in being able
to provide file sharing.  File sharing is
especially useful to scientists that are
investigating the same phenomena, since
they are getting files that cover the same
region.

2. The index is also useful for estimating the
cost (MBs retrieved, time, etc.) of running
the query.  This may provide information to
users to tighten their query (smaller ranges),
or to prevent naïve users from launching
overly large queries and clogging the
system.

3. Conventional multidimensional indexes do
not scale to very high-dimensional spaces.
If in addition, for partial range queries (i.e. if
the number of dimensions in the query is
small, e.g. 3-5 out of 100), we found the
ideas of vertically partitioned files and bit-
sliced indexing very useful.

4. Organizing the architectural design into
separate functional modules was essential

for large projects of this type.  It is also
useful to have well defined interfaces by
using the CORBA IDL.

5. Having a storage access coordination system
between the application software and the
mass storage system (MSS) was not only
valuable in terms of efficient caching.  It
also insulated the application from transient
failures of the MSS.  In case of a transient
failure, STACS simply waits and re-issues
caching requests periodically until the MSS
recovers.  We saw that in several tests.  This
is extremely important for long running
queries (sometimes many hours or even
days), where it is prohibitive to restart a
query run because of transient failures of the
MSS or the network.
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