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INTRODUCTION
Mass changes of the Greenland ice sheet 

(GrIS) can affect global sea levels, the strength 
of the thermohaline circulation (THC) (Rahm-
storf and Ganopolski, 1999), and can infl uence 
Arctic climate and related feedbacks (Fichefet 
et al., 2003). For example, during the Holocene, 
glacial freshwater infl ows into the North Atlan-
tic Ocean are thought to have caused perturba-
tions to the THC, leading to onset of Younger 
Dryas cooling, the 8.2 k.y. event, and the Little 
Ice Age, with consequent impacts on marine 
ecosystems, fi sheries, and agriculture (Clark et 
al., 2002; Grove, 1988). Warming over Green-
land by the end of the current century is esti-
mated at up to three times the global average 
(IPCC, 2007) on account of its geographic posi-
tion. Therefore, modeling the future strength 
of the THC, and its associated climatic conse-
quences, depends greatly on understanding past 
GrIS mass balance (Bougamont et al., 2007).

Recent estimates suggest the GrIS was losing 
~50 Gt yr−1 (Shepherd and Wingham, 2007) dur-
ing the 1990s, and that since 2006 this rate has 
increased to an average value of ~270 Gt yr−1 
(van den Broeke et al., 2009). Remote sens-
ing shows that the spatial extent of melting has 
increased during the past 25 yr (Fettweis et al., 
2007), and there has also been widespread gla-
cier acceleration below 70°N since 2005 (Rignot 
and Kanagaratnam, 2006). Modeled data indi-
cate a rising trend of annual melt (Hanna et al., 
2005; Hanna et al., 2008) and runoff (Ettema 
et al., 2009; Mernild et al., 2011) over the past 

50–60 yr, with record melt years occurring 
since 2003 (Fettweis et al., 2011; Hanna et al., 
2008). These changes in ice melt are likely to 
have been driven by atmospheric processes and 
albedo rather than by ocean temperature (Hanna 
et al., 2009; Tedesco et al., 2011).

As meltwater runoff is estimated to con-
tribute ~50% of Greenland’s annual ablation 
(Box et al., 2006), reconstructing runoff pro-
vides an important component in estimating 
past changes in GrIS ablation. Historic records 
of changes in the GrIS are needed to assess 
whether recent runoff trends represent a step 
change or are natural oscillations about a long-
term mean. However, at present only short tem-
poral records are available. In contrast, melt rate 
records in the Alps have been extended to cover 
the past century and, for 30 Swiss glaciers, indi-
cate a negative correlation between glacier melt 
and the Atlantic Multidecadal Oscillation (Huss 
et al., 2010).

Since the early 1900s, both North Atlantic 
atmospheric (IPCC, 2007) and marine (Kame-
nos, 2010) temperatures have increased, so this 
timescale is also useful for developing and test-
ing methods to reconstruct GrIS melt and runoff 
at centennial timescales. Here we demonstrate 
the use of red coralline algae in reconstruct-
ing relative salinity and temperature within a 
Greenland fjord and present the fi rst 63-yr-long 
reconstruction of historic GrIS melt runoff. 
We provide the fi rst mechanism that will enable 
reconstruction of historic changes in GrIS melt 
runoff at centennial to millennial temporal scales.

MATERIALS AND METHODS
Red coralline algae are long-lived (<700 yr; 

Frantz et al., 2005) marine algae with slow 
growth rates (0.015–2.5 mm yr−1) (Kamenos et 
al., 2008), forming encrusting (calcareous cor-
alline algae) or free-living (maerl or rhodolith) 
growth forms (Fig. 1). The Lithothamnion gla-
ciale alga species has been used to produce vali-
dated (Kamenos et al., 2009) paleotemperature 
reconstructions at biweekly (14 d) resolution over 
650 yr using Mg/Ca (Kamenos, 2010; Kamenos 
et al., 2008) and seasonal paleo–cloud cover 
reconstructions over 96 yr (Burdett et al., 2011). 
Lithothamnion glaciale (Fig. 1) were collected, 
using scuba, from Søndre Strømfjord, Greenland 
(Fig. 2; 66°58′17″N, 53°29′43″W, 8 m depth) in 
2009. The Kangerlussuaq drainage basin (KDB) 
is a 66,000 km2 catchment draining a section 
of the GrIS that drains into Søndre Strømfjord. 
Mg/Ca ratios were extracted from each thallus 
(n = 3) using the techniques in Kamenos (2010) 
via electron microprobe analysis at the Univer-
sity of Edinburgh (UK). Mg/Ca were converted 
to temperature by calibrating against Simple 
Ocean Data Assimilation (SODA; Carton and 
Giese, 2008) temperatures with the technique 
used to construct other existing Mg-temperature 
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A B C Figure 1. Lithothamnion 
glaciale red coralline algae. 
A: Example of a free-living 
thallus (scale bar = 2 cm). 
B: Encrusting thallus from 
Søndre Strømfjord (Green-
land) with arrow indicating 
protruding branch (scale 
bar = 3 cm). C: Transect 
section through an indi-
vidual L. glaciale branch 
showing annual growth 
bands (scale bar = 1 mm).
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relationships (Kamenos, 2010; Kamenos et al., 
2008). Mg/Ca were regressed against seasonally 
corresponding SODA water temperatures at 5 m 
depth; i.e., Mg/Ca = 0.0122 IST + 0.1026, where 
Mg/Ca are the molar Mg/Ca ratios in L. glaciale, 
and IST is in situ temperature at 5 m depth (R2 
= 0.88, p < 0.001, SEb = 5.2 × 10−4, SEa = 8.4 × 
10−3 [standard error on gradient b and intercept 
a]). Summer and winter in situ temperatures 
were reconstructed between A.D. 1939 and 2002 
(see the GSA Data Repository1 for age model). 
Growth in the three thalli overlapped between 
1939 and 2008 (two of the thalli predated 1939); 
however, one thallus had a growth inclusion in 
high-Mg calcite deposited during 2003, so we 
did not consider any data after 2002 in case the 
inclusion affected subsequently deposited cal-
cite. Relative salinity was reconstructed using 
a four-step approach: (1) Mg/Ca-derived tem-
perature was used to calculate predicted δ18O 
using the L. glaciale δ18O-temperature relation-
ship (adjusted for Mg content) (Halfar et al., 
2000; Tarutani et al., 1969); (2) microdrilling 
(New Wave Research) and isotope ratio mass 
spectrometry (VG Isogas Prism II) at the Scot-
tish Universities Environmental Research Centre 
(SUERC) were used to determine actual δ18O 
(which contains both temperature and salinity 
information; Gagan et al., 1994) at a 5 yr resolu-
tion (this resolution proved to be the ideal com-
promise between material available for analy-

sis and analytical precision); (3) the difference 
between predicted and actual δ18O is the salinity 
component of a carbonate record (McCulloch et 
al., 1994); and (4) the salinity component was 
converted to relative salinity change using the 
δ18O-salinity relationship in Alkire et al. (2010).

Proxy Sensitivity
Temperatures derived from Mg/Ca in red cor-

alline algae have a 0.3–0.5 °C error (Kamenos, 
2010; Kamenos et al., 2008) against the 6 °C 
temperature range determined in these samples, 
representing a low noise-to-signal ratio. Tem-
perature-Mg relationships have been directly 
calibrated over a 7 yr period (Kamenos et al., 
2008) and used to reconstruct temperature over 
650 yr (Kamenos, 2010), and, combined with 
the absence of diagenetic effects (Alexanders-
son, 1974), are therefore considered temporally 
stable. Inorganic carbonate exhibits a −0.22 δ18O 
(‰) per °C rise (Kim and Oneil, 1997) relation-
ship, and seawater exhibits a +0.5 (Broecker, 
1989) to +0.7 (Alkire et al., 2010) δ18O (‰) 
per mil salinity rise relationship. From 1939 to 
2002, the Søndre Strømfjord δ18O salinity com-
ponent had a 3‰ range determined at 0.03‰ 
analytical precision. Propagation of analytical 
and regression error generates a total error on 
calculated salinity of ±0.34 (Fieller’s theorem). 
For full methods, see the Data Repository.

RESULTS AND DISCUSSION

Temperature Relationships
From 1984 to 2002, instrumental summer 

atmo spheric temperature in Kangerlussuaq rose 

from 8.5 to 10.2 °C (Fig. 3A). There is a signifi -
cant negative correlation between instrumental 
atmospheric summer temperature and our recon-
structed marine summer in situ temperature in 
Søndre Strømfjord (Fig. 3F) (r = −0.496, p = 
0.031, n = 19). Higher atmospheric temperatures 
enhance summer melting and runoff (Hanna et 
al., 2008) into Søndre Strømfjord. This infl ux of 
cold runoff (at ~1 °C) likely causes a fall in Søn-
dre Strømfjord seawater temperature, explain-
ing the negative correlation. The relationship 
between atmospheric and reconstructed marine 
summer temperature is thus mediated by runoff, 
explaining the lower-strength (but signifi cant) 
correlation between them.

Runoff Relationships
The increased cold freshwater input in sum-

mer is related to salinity reduction in Søndre 
Strømfjord (Nielsen et al., 2010) and is demon-
strated temporally in this study (Fig. 3). Runoff 
entering Søndre Strømfjord is mixed within the 
top 50–75 m of the water column by tidal action 
at 90 km from the inland fjord terminus, leading 
to a fall in water salinity (Nielsen et al., 2010). 
As the sampling location used in this study 
(Fig. 2) was within the fully mixed portion of 
Søndre Strømfjord, relative salinity recorded 
in the growth bands of red coralline algae was 
used to reconstruct KDB runoff. Differential 
mixing caused by freshwater discharge variation 
is not present shallower than 20 m (Nielsen et 
al., 2010), thus our record is not likely to show 
changes in mixing patterns but rather runoff-
induced changes in surface salinity.

A signifi cant negative correlation between 
modeled GrIS runoff (r = −0.698, p = 0.037, n 
= 9) and our reconstructed Søndre Strømfjord 
salinity (binned to the same 5 yr temporal reso-
lution as relative salinity) was present. While 
modeled KDB runoff (Fig. 3B) is not long 
enough to allow robust statistical comparison, 
there is a clear rise in runoff after 1992 associ-
ated with a synchronous fall in reconstructed 
relative salinity. Drainage area calculations 
(P. Palmer, 2010, personal commun.) indicate 
that only a minor portion of runoff is generated 
by snow melt, and thus we attribute the relative 
salinity signal to glacial rather than snow origin. 
There are no tidal glaciers in Søndre Strømfjord; 
thus calving does not affect fjord salinity.

KDB Runoff Variability and Melt Extent
Our reconstruction indicates that salinity in 

Søndre Strømfjord peaked during 1984–1988 
(Fig. 3C). Our data, comparisons with modeled 
runoff, and other research (Nielsen et al., 2010), 
indicate that runoff is a key factor controlling 
salinity in Søndre Strømfjord, and thus we sug-
gest that, in the period 1939–2002, KDB runoff 
reached its lowest volume during 1984–1988, 
and subsequently rose to its highest volume in 
2002 (Fig. 3C). Increased melt and runoff has 
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1GSA Data Repository item 2012317, materials 
and methods, is available online at www.geosociety
.org/pubs/ft2012.htm, or on request from editing@
geosociety.org or Documents Secretary, GSA, P.O. 
Box 9140, Boulder, CO 80301, USA.

Figure 2. Søndre Strømfjord (inset) in Greenland. Red coralline algal collection site is en-
closed in a black circle. Black box on main map indicates location of inset map within Green-
land. Area enclosed by dashed line is the Kangerlussuaq drainage basin, which drains into 
Søndre Strømfjord. Bathymetry is for the open ocean and refers to inset map (data provided 
by the World Oceanographic Database and plotted using Ocean Data View; Schlitzer, 2012).
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continued since 2002 with several extreme sum-
mer events during 2002–2010 (Ettema et al., 
2009; Fettweis et al., 2011; Hanna et al., 2008).

Modeled KDB (Mernild et al., 2011) and 
GrIS (Hanna et al., 2008) runoff (Fig. 3B) also 
increase since ca. 1995, in agreement with our 
KDB record. However, modeled runoff (KDB 
and GrIS) does not show the distinct drop in 

runoff volume during 1984–1988 that our 
reconstruction presents. The difference between 
reconstructed relative salinity and modeled run-
off may be attributed to the high resolution of 
our proxy allowing identifi cation of this drop, 
temporally variable model error, and/or a shift 
in the runoff-ablation balance. To pinpoint the 
exact causes of the difference we require a lon-

ger time series of runoff enabling us to better 
understand melting behavior.

Søndre Strømfjord In Situ Water 
Temperature Variability

Mean in situ summer and winter water tem-
peratures in Søndre Strømfjord were dominated 
by peaks in the 1950s and 1980s (Figs. 3F and 
3G). Rates of in situ temperature change were 
faster in summer than winter during both pro-
nounced upward (1977–1989: F = 4.21, p = 
0.04, df = 1; where F is the test statistic and df 
is degrees of freedom) and downward (1989–
2002: F = 4.56, p < 0.001, df = 1) changes in 
temperature (Figs. 3F and 3G). These results 
suggest that summer in situ water temperature 
was most responsible for driving the difference 
between summer and winter water tempera-
tures; i.e., summer in situ temperatures increased 
more than winter in situ temperatures. By con-
trast, instrumental atmospheric records indicate 
warming winters on the west coast of Greenland 
since 1873 (Box et al., 2010). We attribute the 
opposing patterns to our reconstruction record-
ing the infl uence of meltwater runoff during 
summer, but during winter recording back-
ground fjord water temperature when there is 
no runoff and Søndre Strømfjord is ice-covered. 
Thus, as warm winter temperatures enhance 
melt and runoff the following summer by reduc-
ing the energy required to melt accumulated ice 
and snow (Box et al., 2010), our reconstruction 
of enhanced summer runoff corroborates those 
observations. Similarly to this reconstruction, 
enhanced marine summer warming has also 
been observed in East Atlantic waters over cen-
tennial timescales and attributed to possible dif-
ferential forcing by the North Atlantic Oscilla-
tion and the Atlantic Multidecadal Oscillation 
on water temperatures in summer and winter 
(Kamenos, 2010).

While changes in subsurface currents along 
the west coast of Greenland have been linked 
to enhanced velocities of tidewater glaciers in 
Disko Bay at annual timescales (Holland et al., 
2008), we observed no evidence of warm water 
encroachment into Søndre Strømfjord at annual 
or subannual timescales. During years of warm 
subsurface ocean temperature (1997–2002) 
(Holland et al., 2008), our reconstructed in situ 
water temperatures in Søndre Strømfjord were 
among the lowest temperatures recorded since 
1939 (Fig. 3). Thus, water temperatures in Søn-
dre Strømfjord appear to be controlled by melt-
water from the KDB, rather than encroaching 
water from subsurface ocean currents on the 
west coast of Greenland.

CONCLUSIONS
We have developed a proxy that for the fi rst 

time has enabled synchronous reconstruction 
of temperature in Søndre Strømfjord and runoff 
from the KDB sector of the GrIS since 1939. 
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Figure 3. Søndre Strømfjord (Greenland) environmental time series. A: Kangerlussuaq 
(IWMO station 4231) summer instrumental atmospheric temperature. B: Modeled Kanger-
lussuaq drainage basin (Mernild et al., 2011) and Greenland ice sheet (Hanna et al., 2008) 
runoff. C: Relative in situ marine salinity (5 yr bins) at –5 m chart datum in Søndre Strøm-
fjord reconstructed from Lithothamnion glaciale. This is negatively correlated to runoff from 
the Kangerlussuaq drainage basin. Gray shading indicates measurement and regression 
absolute salinity error. D: δ18O recorded within the growth banding of L. glaciale (5 yr bins). 
E: Calculated summer δ18O using temperature derived from F. F: Maximum annual summer 
temperatures (and 5 yr moving average) at –5 m chart datum in Søndre Strømfjord recon-
structed from L. glaciale. Gray shading indicates measurement and regression standard er-
ror. G: Minimum annual winter temperatures (and 5 yr moving average) at –5 m chart datum 
in Søndre Strømfjord reconstructed from L. glaciale. Gray shading indicates measurement 
and regression standard error. H: Molar Mg/Ca extracted from L. glaciale. Peaks represent 
maximum summer Mg/Ca and troughs represent minimum winter Mg/Ca.
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This new proxy will enable the fi rst reconstruc-
tions of changes in GrIS runoff during periods 
of known environmental change such as the 
Medieval Warm Period. Such events are char-
acterized by large deviations from the mean 
temperature of the time, and thus the sensitiv-
ity of our proxy is well suited to assess whether 
recently observed changes in GrIS runoff rep-
resent a step change or are natural interannual 
oscillations in runoff refl ecting climatic fl uctua-
tions and/or ice sheet hydrology.
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