
INTRODUCTION

The acoustic soundscape of the benthic zone is a
cacophony of snaps, squeaks, hums, grunts, and rasps
produced by animals such as snapping shrimp (Au &
Banks 1998), clawed lobsters (Henninger & Watson
2005), spiny lobsters (Patek & Oakley 2003), hermit
crabs (Dumortier 1963), and fishes (Tavolga 1977).
Given the low-light environment in which most ben-
thic organisms live, the acoustic modality can play
important roles—attracting mates, repelling rivals,
deterring predators, or maintaining territories. More-
over, daily patterns in the acoustic activity of fishes
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ABSTRACT: Although much research has focused on
acoustic mapping and exploration of the benthic
environment, little is known about the acoustic ecol-
ogy of benthic organisms, particularly benthic crus-
taceans. Through the use of a coupled audio–video
system, a hydrophone array, and an autonomous
recording unit, we tested several hypotheses about
the field acoustics of a benthic marine crustacean,
Hemisquilla califor niensis. Living in muddy burrows
in southern California, these large mantis shrimp
produce low frequency ‘rumbles’ through muscle
vibrations. First, we tested whether acoustic signals
are similar in the field and in the laboratory, and dis-
covered that field-produced rumbles are more
acoustically and temporally variable than laboratory
rumbles, and are typically produced in rhythmic
series called ‘rumble groups.’ Second, we verified if
the sounds were indeed coming from mantis shrimp
burrows and explored whether rumble groups were
produced by multiple individuals. Our results suggest
that during certain time periods, multiple mantis
shrimp in the vicinity of the hydro phone produce
sounds. Third, we examined the relationship between
behavioral and acoustic activity, and found that H.
californiensis is most active during  crepuscular peri-
ods. While these crustaceans make a substantial con-
tribution to the benthic soundscape, omnipresent and
acoustically overlapping boat noise may threaten
their acoustic ecology.
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(McCauley & Cato 2000, Locascio & Mann 2008), snap-
ping shrimp (Lammers et al. 2008), and sea urchins
(Radford et al. 2008) suggest that the benthic zone is an
acoustic environment with distinct diel trends. How-
ever, compared to the extensive literature on acoustic
behaviors in other marine taxa such as cetaceans, few
investigations have explored acoustic communication
among benthic invertebrates, particularly benthic crus-
taceans.

Mantis shrimp (Crustacea, Stomatopoda) are benthic
marine crustaceans that are well known for their fierce
predatory strikes (Patek et al. 2004) and excellent
visual systems (Cronin & Marshall 2004). When the
raptorial appendage of this animal makes contact with
a prey item or the substrate, a sound is produced
(Alcock 1900, Kemp 1913, Hazlett & Winn 1962, Cald-
well 1979, Patek & Caldwell 2005), and stridulation
may occur between the uropod and the telson (Brooks
1886, Giesbrecht 1910, Balss 1921, Dumortier 1963).
The only record we could find of mantis shrimp sounds
in the field is an anecdotal report of ‘groaning’ noises
emanating from burrows of a large temperate stomato-
pod, the California mantis shrimp Hemisquilla cali-
forniensis (Haderlie et al. 1980).

Hemisquilla californiensis was the focus of the
first comprehensive laboratory study of mantis shrimp
sounds, which were referred to as ‘rumbles’ (Patek
& Caldwell 2006). Individuals were held in tanks, and
sounds were recorded from 50% of the males (n = 12),
and none of the females (n = 6). Whether or not females
are capable of generating rumbles remains unknown.
Rumbles appeared to be produced by vibrations of
posterior mandibular remoter muscles located under-
neath the carapace (Fig. 1). Most rumbles lasted <2 s
and the mean dominant frequency was 45 Hz (±10 SD,
n = 53 rumbles).

While previous experiments have focused on either
laboratory based sound production or the general eco -
logy of Hemisquilla californiensis, the present study is,
to our knowledge, the first to investigate the acoustics
of this species in its natural habitat. H. californiensis
occurs off the coast of California and Mexico and lives
in self-constructed muddy burrows, which provide a
safe place for feeding, mating, and molting (Basch &
Engle 1993). During the mating season (March to
June), which is the time period of the present study,
pairs of males and females reside together for several
weeks. Males guard their burrows intensely, especially
during crepuscular periods, when individuals are most
active. H. californiensis typically closes its burrow with
a mucous cap during periods of bright daylight and at
night, presumably for protection from predators, which
range from octopus to benthic-feeding elasmobranchs
(Basch & Engle 1989, Basch & Engle 1993, Gray et al.
1997). We addressed 3 main questions: (1) Do rumbles
in the field differ from those produced in the labora-
tory? (2) Are rumble groups produced by multiple indi-
viduals? (3) Do patterns of acoustic activity match pre-
viously documented patterns of behavioral activity?

MATERIALS AND METHODS

We utilized 3 approaches. (1) We used 2 recording
systems to identify and characterize rumbles produced
in the natural habitat of Hemisquilla californiensis. (2)
A hydrophone array allowed us to calculate the loca-
tions of rumbles. (3) An autonomous recording unit
provided acoustic data that were used to describe diel
patterns of mantis shrimp acoustic activity. Field
recordings were obtained at 2 locations along the coast
of Santa Catalina Island, CA, USA, in the early mating
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Fig. 1. Hemisquilla californiensis is a large mantis shrimp that builds burrows in the muddy benthic zone off the coast of southern
California. (A) Individuals regularly leave their burrows to forage and interact with neighboring mantis shrimp. Males possess red
patches on either side of the carapace, which lie just above the sound-producing muscles (arrow). (B) Individuals can often be
seen guarding their burrows. During the mating season, males decorate the edges of their burrows with shells, presumably to 

attract females (J. Engle pers. comm.). Scale bar: ~1 cm
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season (March 2009 and March 2010). We deployed
each recording device using SCUBA and anchored it
to the substrate near an H. californiensis burrow (~12
to 18 m depth, 13°C temperature, 33 salinity).  During
both field seasons, sunrise was at ~06:45 h and sunset
was at ~19:15 h.

Identifying and characterizing rumbles generated
in situ. To test whether rumbles in the field differed
from those produced in previous laboratory experi-
ments (Patek & Caldwell 2006), we first identified and
de scribed rumbles produced by Hemisquilla californi -
ensis. Sounds were recorded at a total of 4 burrows
over the course of 4 dives in the waters near Two Har-
bors, Santa Catalina Island. Two recording systems
were used: a hydrophone that was connected to an
underwater video camera (HTI-94-SSQ series, High
Tech; sensi tivity: –167.4 dB re:1 V µPa–1, frequency
response: 2 to 30 kHz; camera: DCR-VX2100, Sony
Electronics; housing: VH-2100, Amphibico) and an -
other hydrophone that recorded onto a digital audio
recorder (Type 8104 hydrophone, Brüel and Kjaer; sen-
sitivity: –207.9 dB re:1V µPa–1, frequency range: 0.1 to
10 kHz; recorder: PMD670, Marantz; 16 bit, 48 kHz
sample rate). We positioned the recording systems
~30 cm from the nearest burrow, and we left the area
once the equipment was in place to minimize potential
interference on the recordings from SCUBA bubbles.

Waveforms and spectrograms of these recordings
were used to identify individual rumbles for analysis.
For the video files, the audio component was first
extracted into a 2-channel clip (iMovie 4.0.1, Apple;
16 bit, 48 kHz sample rate). Then each file from the
4 dives was downsampled to 2000 Hz (Matlab v. 2007b,
The Mathworks) and low-pass filtered at 500 Hz (Raven
Pro 1.4, Cornell Lab of Ornithology, Ithaca, NY). The
following spectrogram parameters were used to view
and analyze these recordings: for the files from the first
recording system—Hann window, 8192 Pt. fast Fourier
transform (FFT), 90% overlap (yielding a frequency
resolution of 0.244 Hz); for files from the other record-
ing system—Hann window, 16 384 Pt. FFT, 90% over-
lap (yielding a frequency resolution of 0.122 Hz). For
each rumble, we measured duration, lowest frequency,
highest frequency, dominant frequency (the frequency,
in Hz, with the highest sound level), and peak power
(the sound level, in relative dB, at the dominant
 frequency). For the data from the recording units
described above, we report the average for the domi-
nant frequency and duration. However, these hydro -
phones were not calibrated, so for peak power, we
report relative levels and limit our comparisons to data
from the same recordings.

The field recordings revealed rumbles that were pro-
duced in groups of 2, 3, or 4. Therefore, we introduced
the term ‘rumble group’ to describe a short series of

rumbles (e.g. Fig. 2) that have similar dominant fre-
quency and peak power and occur within 0.25 s of each
other. Rumble groups were usually produced in long
repetitive series, lasting from several minutes to hours,
which we call ‘rumble bouts’ (Fig. 3). In order to define
the structure of a typical rumble group, we used data
from multiple rumble bouts, which were recorded on
different days and at different locations (and were
assumed to be independent; Figs. 2 & 3). We analyzed
bouts which had at least 9 rumble groups with at least
2 rumbles per group (minimum df = 8), allowing us to
make 17 comparisons. Matched pairs t-tests were used
to examine the differences in peak power and duration
between the first and second rumble of each group
(JMP v. 7.0, SAS Institute).

Within certain recording periods, we observed
acous tically distinct rumble bouts which either alter-
nated or overlapped temporally. To test whether these
varying rumble bouts could have been produced by
different  individuals, we examined their dominant fre-
quency (which could differ due to a physical quality
such as body size) and relative peak power (which
could differ due to body size and distance from the
hydrophone). We assigned labels to distinct rumble
bouts (i.e. Bout A, Bout B, etc. as in Fig. 3) and tested
for significant differences in dominant frequency and
peak power using Kruskal-Wallis test (JMP, SAS).
Because the first rumble of each group was typically
the most consistent, we only compared these.

Locating the source of mantis shrimp rumbles. In
order to confirm that rumbles originated from mantis
shrimp burrows and not another unidentified source,
we deployed a 3-element hydrophone array to localize
the source of the sounds (array engineered by the Cor-
nell Lab of Ornithology; 3 HTI-94-SSQ hydrophones,
High-Tech; sensitivities: –169.4, –169.4, –169.2 dB
re:1V µPa–1, frequency response: 2 to 30 kHz). We
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Fig. 2. Hemisquilla californiensis. Typical rumble group, con-
sisting of 3 rumbles (labeled 1, 2, and 3). Spectrogram para-
meters: Hann window, 256 samples; 3 dB filter bandwidth,
11.2 Hz; discrete Fourier transform (DFT), 8192 samples; over-

lap, 90%; 50 to 500 Hz bandpass filter
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identified a focal male and its burrow at a depth of
14 m by SCUBA diving. We placed the hydrophones in
an equilateral triangle (5 m side–1) centered around the
burrow, and recorded sounds between 25 to 28 March
2010. Hydrophone cables were extended to the surface
and into a boat where sounds were recorded on a
 computer with Raven Pro software, with a sample rate
of either 5 or 20 kHz and a sensitivity range of either
±0.5 or ±5V (16 bit, NIDAQ USB-6251, National
 Instruments).

Although we recorded sounds for several hours, we
only analyzed a small subset of rumbles that were free
of boat noise and/or other obscuring sounds. For the
analysis, all data were bandpass filtered (10 to 500 Hz).
We used the XBAT software program (www.xbat.org;
Figueroa 2005) to compute multi-channel spectro-
grams (Hanning window, 2214 or 512 Pt. FFT depend-
ing on sample rate of file), visually and aurally confirm
the occurrences of rumbles, and annotate individual
rumbles. A second customized Matlab-based program
was used to compute the location of rumbles based on
their times of occurrence at each of the 3 hydrophones
(Clark et al. 1996, Clark & Ellison 2000). To assure cor-
rect localization, we limited our analysis to rumbles
with waveforms that could be clearly observed on all
3 channels.

Identifying patterns in mantis shrimp acoustic activ-
ity and vessel noise. To test whether patterns in mantis
shrimp acoustic activity matched previously docu-
mented behavioral activity (Basch & Engle 1989), we
deployed an autonomous recording unit for almost
8 d, from 21 March  at 16:20 h until 29 March 2009 at
10:30 h (Cornell Lab of Ornithology; HTI-90-U hydro -
phone, High-Tech; sensitivity: –197.3 dB re:1V µPa–1,
frequency response: 2 to 20 kHz, continuous sampling
at 16 bit, 32 kHz sample rate). The unit was deployed

~9 km from the Two Harbors site and anchored 3.8 m
from the nearest male Hemisquilla californiensis bur-
row at 18 m depth.

In order to examine patterns across each day, acoustic
data were downsampled to 1000 Hz and combined to
create 24 h files. These were converted into daily spec-
trograms, and each day of data was visually and
aurally analyzed by the same trained investigator to
identify rumble patterns and boat noise. We estab-
lished operational definitions to describe whether these
rumble rates should be considered ‘rhythmic’ (occur-
ring in groups, <0.25 s apart, as defined above) or
 ‘sporadic’ (occurring as single rumbles). Power spec-
tral density distribution levels (dB re:1 µPa2 Hz–1) and
sound levels (dB re:1 µPa) were computed based
on hydrophone sensitivities and gain settings of the
recording systems.

RESULTS

Rumble characteristics. Rumbles measured at differ-
ent burrows and on different days had similar acoustic
features, but exhibited high variability in dominant fre-
quency. For all rumbles, we measured an average
dominant frequency of 167.0 Hz (±0.66 SE, range 53 to
257 Hz) and an average duration of 0.20 s (±0.0013 SE,
range 0.06 to 0.6 s). The initial rumble in a group had
significantly higher relative sound levels than the sec-
ond rumble in 16 out of 17 comparisons made (average
difference = 5.1 dB, average SE = 0.71, matched pairs t-
tests, p < 0.01 for all tests). The first rumble was also
significantly longer in duration than the second rumble
in 14 out of 17 comparisons (average difference = 0.092
s, average SE = 0.015, matched pairs t-tests, p < 0.01 for
all tests).
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Fig. 3. Hemisquilla californiensis. Rumble groups alternated and sometimes overlapped, suggesting that multiple individuals
were producing the sounds. The spectrogram shows 2 rumble bouts (labeled a and b); these data correspond to example no. 11 in
Table 1 and data presented in Fig. 4. Boxes surround rumble groups, not individual rumbles. Spectrogram para meters: Hann 

window, 256 samples; 3 dB filter bandwidth, 5.62 Hz; DFT, 1024 samples; overlap, 90%; 50 to 500 Hz bandpass filter
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Differences between overlapping rumble groups.
We found 12 examples (from different days and
recordings) in which co-occurring rumble bouts dif-
fered in either dominant frequency or relative peak
power of the rumbles (Table 1). We found 9 examples
in which both the dominant frequency and the peak
power differed significantly (Fig. 4) between the 2
bouts. In several cases, rumbles overlapped temporally
(see example in Fig. 3).

Locations of mantis shrimp rumbles. We estimated
the location of 52 rumbles (Fig. 5). The locations were
clustered; some rumbles originated from inside the
hydrophone triangle, closest to No. 3, while others
originated outside the triangle (Fig. 5). In a few cases,

rumbles that were <2 s apart originated from locations
that were several meters apart.

Diel patterns in mantis shrimp acoustic activity.
At the site of the autonomous recording unit, we ob -
served daily patterns in mantis shrimp acoustic activity
(Table 2). Every morning and on 7 of 8 evenings
(~17:00 to 19:30 h), we detected loud rhythmic rumble
groups. At night (19:30 to 05:30 h), we observed sounds
that closely resembled mantis shrimp rumbles but
were less rhythmic; these rumbles oc curred in isolation
and were of lower received level and lower frequency
than the more intensive and clearly discernible daytime
rumbles. At mid-day (~11:30 to 01:30 h), we did not
detect rumbles in 6 of 7 d, but periods without rumbles
were more variable, and the compounding effect of
vessel noise made it difficult to discern patterns.
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Bout A Bout B Comparisons
Test No. of RGs R G–1 FDom (Hz) PPeak (dB) No. of RGs R G–1 FDom (Hz) PPeak (dB) FDiff H p PDiff H p

1 22 4 197.2 ± 1.0 70.8 ± 0.19 11 3 230.1 ± 9.62 62.1 ± 0.60 33.0 8.0 0.005 8.7 21.4 0.0001
2 8 3 205.5 ± 0.95 70.8 ± 0.25 6 1 148.5 ± 1.76 76.6 ± 0.41 57.1 9.7 0.002 5.8 9.6 0.0002
3 15 4 169.5 ± 4.4 83.2 ± 0.26 15 2 143.7 ± 0.49 92.1 ± 0.59 25.8 21.8 0.0001 8.9 21.8 0.0001
4 12 4 140.9 ± 0.49 71.1 ± 1.10 7 2 207.9 ± 2.31 69.0 ± 1.13 66.9 12.6 0.0004 2.1 1.8 0.176
5 13 4 132.9 ± 0.58 91.9 ± 0.19 8 2 185.8 ± 3.08 82.5 ± 0.81 52.9 14.2 0.0002 9.4 14.2 0.0002
6 24 2 163.1 ± 0.86 70.7 ± 0.29 24 3 141.8 ± 5.18 68.8 ± 0.22 21.3 7.5 0.006 2.0 19.4 0.0001
7 17 3 145.1 ± 0.92 71.3 ± 0.46 16 1 135.5 ± 7.05 64.5 ± 2.1 9.6 3.4 0.065 6.8 23.3 0.0001
8 13 3 144.7 ± 2.97 73.5 ± 0.44 8 1 184.5 ± 0.99 66.2 ± 0.42 39.9 14.5 0.0001 7.3 14.2 0.0002
9 19 3 119.4 ± 1.54 74.3 ± 0.18 13 3 163.6 ± 3.36 70.9 ± 0.39 44.2 23.5 0.0001 3.3 18.4 0.0001
10 17 2 171.5 ± 2.28 72.3 ± 0.34 22 3 149.2 ± 1.19 71.8 ± 0.34 22.3 24.9 0.0001 0.51 0.54 0.46
11 13 3 167.7 ± 3.38 66.5 ± 0.47 15 1 213.4 ± 4.08 59.9 ± 0.59 45.8 19.3 0.0001 6.5 19.7 0.0001
12 38 1 164.7 ± 0.34 74.3 ± 0.019 26 2 178.9 ± 0.69 64.5 ± 0.37 14.1 47.0 0.0001 9.8 45.6 0.0001

Table 1. Hemisquilla californiensis. Tests performed from recordings collected at 12 distinct days and times. Within each test, 2 temporally over-
lapping and acoustically distinct bouts were identified. For each bout, the number of rumble groups tested (RG), mean number of rumbles per
group (R G–1), dominant frequency (FDom; Hz ± SE), and relative peak power (PPeak; relative dB ± SE) are shown, as well as the differences in
dominant frequency (FDiff; Hz) and peak power (PDiff; relative dB). Kruskal-Wallis tests were used to compare the dominant frequency and peak 

power between Bouts A and B, using only the first rumble of each group; bold: statistically significant comparisons

Fig. 4. Hemisquilla californiensis. Although relative peak
power (dB re: 1 µPa2 Hz–1) and dominant frequency (Hz) were
not correlated, 2 bouts of rumble groups showed distinct clus-
ters for these 2 parameters (Series A = open square, Series B =
filled circle). Each point represents data from the first rumble
of each of the rumble groups analyzed (for A, n = 13; for B, n =
15). These data correspond to example no. 11 in Table 1 and 

the spectrogram shown in Fig. 3

Fig. 5. Hemisquilla californiensis. Localization of rumbles us-
ing a 3-hydrophone array (black numbered circles) demon-
strated that the sounds were emitted in close vicinity to the ar-
ray, but not from the burrow opening (×); small dots: most
likely location for each rumble, as calculated by a time-delay
algorithm. Hydrophone no. 1 was used as the origin (0,0) for 

the grid in the time-delay algorithm



DISCUSSION

Compared to the relatively uniform sounds previ-
ously recorded in the laboratory (Patek & Caldwell
2006), the field-based recordings were more variable
in their frequency and temporal characteristics. Pat-
terns of acoustic activity matched previously published
patterns of behavioral activity (Basch & Engle 1989).
The timing of distinct rumble patterns, coupled with
results from the hydrophone array, suggest that multi-
ple individuals in an area produce sound simultane-
ously, possibly in a coordinated behavioral system. The
power spectral density distribution of mantis shrimp
rumbles was different from the background noise
(Fig. 6), suggesting that these sounds make a substan-
tial contribution to the benthic soundscape.

Characteristics of rumbles from the field

The most distinct difference between tank and field
recordings was that rumbles in the field were produced
in rhythmic groups. Across all recording types and
days, certain parameters of rumble groups were con-
served: the first rumble was the longest and loudest
rumble of the group, and rumbles typically occurred

within a limited frequency band. However, the domi-
nant frequency, relative peak power, and number of
rumbles per group were significantly different across
sampling days but also within sampling periods, sug-
gesting that different individuals produced acoustically
distinct rumbles. These results corroborate the findings
of the laboratory experiment, which demonstrated vari-
ability between rumbles from different individuals
(Patek & Caldwell 2006). Furthermore, our field data
revealed recording periods in which different rumble
groups overlapped temporally (Fig. 3). It seems unlikely
that the 2 sound-producing muscles within 1 mantis
shrimp could simultaneously produce 2 rumbles that
differed in both dominant frequency and power. These
results led us to conclude that several mantis shrimp
within the vicinity of the hydrophone were  generating
rumbles simultaneously. Indeed, our hydro phone array
located multiple sources of rumbles, which were several
meters apart (Fig. 5). Although we cannot rule out the
possibility that our focal animal was moving around
while producing sound, examples of rumbles occurring
<2 s apart at different locations provide strong evi -
dence that 2 ind. were rumbling. Furthermore, there
were many periods in which >2 mantis shrimp were
audible, creating a cluttered spectrogram and perhaps
representing a mantis shrimp ‘chorus’ (Fig. 7).

The other differences between
field and laboratory recorded rumbles
(Patek & Caldwell 2006) were primar-
ily due to differences in methodology
and sampling environments. For ex -
ample, in the tank experiment, indi-
viduals were approached by a hy -
drophone or a stick; these animals
probably produced sounds in an anti-
predator context (Bradbury & Vehren-
camp 1998, Patek & Caldwell 2006,
Staaterman et al. 2010). Furthermore,
tank recordings typically distort the
acoustic quality of animal sounds
(Parvulescu 1967, Akamatsu et al.
2002, Patek et al. 2009).
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Period Time of day Acoustic activity No. of days Open burrows 
observed (%)

Morning crepuscular period ~06:30 – 08:30 h Loud, rhythmic rumbles 8 of 8 50
Mid-morning ~09:30 – 11:30 h Loud, rhythmic rumbles 6 of 8 nd
Mid-day ~11:30 – 01:30 h No rumbling 6 of 7 15
Evening crepuscular period ~17:00 – 19:30 h Loud, rhythmic rumbles 7 of 8 50–70
Night ~20:00 – 05:30 h Quiet, sporadic, low-frequency rumbles 8 of 8 0

Table 2. Hemisquilla californiensis. Daily patterns in acoustic activity were consistent with published data on behavioral activity
and burrow openings (data on open burrows from Basch & Engle 1989, their Fig. 3; n = 13 ind.). Sounds were recorded for almost 

8 continuous days, but one mid-day period was missed

Fig. 6. Hemisquilla californiensis. Power spectral density measurements of mantis
shrimp rumbles (grey line) were greater than background noise (black line)
across the 100 to 500 Hz frequency band, but especially in the main communica-
tion band (~100 to 250 Hz). The peak in background noise at 120 Hz was from the 

autonomous recording unit’s hard drive
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Diel patterns in mantis shrimp acoustic activity

The daily patterns in acoustic activity were consis-
tent with those described by Basch & Engle (1989).
During crepuscular periods, individuals can be
observed on foraging expeditions or guarding the
entrance to their burrows (E. Staaterman pers. obs.).
Acoustic activity was high during these times and rum-
bles were produced in groups. During periods of bright
daylight and at night, Hemisquilla californiensis close
their burrow with a mucous cap (Table 2; Basch &
Engle 1989, 1993). Sporadic, lower-frequency, and rel-
atively lower level sounds were recorded during these
times. Differences in acoustic characteristics might
result from the mucous plug covering the burrows or
from the location of the animals within their burrows.

Acoustic ecology of Hemisquilla californiensis

The rhythmic nature of the daytime rumbles, and the
variability in rumble characteristics for sim ultaneous
rumble bouts, suggest that the rumbles serve a conspe-
cific, communicative function (Bradbury & Vehren-
camp 1998).

Many crustaceans are capable of detecting sound
through a variety of mechanisms, including sensory
hairs which function as particle motion detectors for
both water-borne and substrate-borne signals (Breit -
haupt & Tautz 1990, Budelmann 1992, Taylor & Patek
2010). Like most crustaceans, Hemisquilla californien-
sis is covered with sensory hairs and is thus capable of
detecting some forms of vibration. Although particle
motion is dominant in the near-field region (usually <1
wavelength from the sound source), this region is 5×
larger in water than it is in air, making this a behav-

iorally feasible range for communication in crusta -
ceans (Ewing 1989). For example, the average mantis
shrimp rumble with a dominant frequency of 167 Hz,
traveling at 1500 m s–1 in seawater, would have a near-
field, free-field range of ~9 m. Given the measured
population density of H. californiensis of 1 ind. per 12 m2

(Basch & Engle 1993), mantis shrimp could detect rum-
bles from their neighbors. In addition, substrate-borne
vibrations could further enhance signal detectability.

Why do individuals produce acoustically distinct
rumbles? To address this question, we should consider
the behavioral activity that occurs during the early
mating season, when our recordings were collected. At
all times of the year, this species is considered to be
highly territorial and the spacing of burrows plays an
important role in its ecology (Basch & Engle 1989,
Basch & Engle 1993). During the mating season, males
decorate their burrows with shells (Fig. 1) and recruit
females to their burrows. Burrows are guarded espe-
cially intensely at this time, as intruder males have
been seen evicting resident males in order to gain
access to females (J. Engle pers. comm.). Therefore, we
present 2 non mutually exclusive potential functions
of the rumble: (1) maintenance of territory, and (2)
attraction of mates.

Given the spacing of the burrows and the presumed
range at which rumbles are detectable, this may be
a communication network in which a sender’s signal
is detected by multiple neighbors (McGregor 1993,
2005). In this case, acoustic signals may function to
help individuals establish and maintain territories, as
observed in other taxa (reviewed by McGregor 1993).
For example, field crickets respond differently to
 loudspeakers playing highly degraded versus less
degraded sounds of conspecifics, indicating that the
quality of the sound helps crickets to determine the
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Fig. 7. Hemisquilla californiensis. Rumble groups from multiple individuals are visible in the spectrogram; note the differences in
temporal patterning, intensity (as indicated by display darkness), and frequency. Some repetitive rumble groups are visible, but
there is so much acoustic activity that it is difficult to discern exactly how many individuals are signaling. Sounds from the au-
tonomous recording unit’s hard drive have been filtered out, except for the 120 Hz ‘hum’ (horizontal line). Spectrogram para -
meters: Hann window, 256 samples; 3 dB filter bandwidth, 5.62 Hz; DFT, 1024 samples; overlap, 90%; bandstop filters at 35 Hz 

and 75 Hz
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distance at which a neighboring individual is signal-
ing. In electric fish, individuals respond less aggres-
sively to signals produced by immediate neighbors
than to signals produced by strangers. These 2 ex -
amples show that, in other taxa, the ability to distin-
guish the distance and identity of signaling con-
specifics helps individuals determine the appropriate
aggression levels with which to defend their territories
(McGregor 1993). If mantis shrimp produce rumbles
while exploring regions outside of their burrows, bur-
row residents would probably be able to detect move-
ment of their neighbors (potential intruders) and use
this information to respond appropriately. During one
of the hydrophone array deployment dives, we ob -
served a neighboring male shrimp near the burrow of
our focal male (E. Staaterman & A. Gallagher pers.
obs.). The data from the array revealed that there were
2 sound-producing individuals in the vicinity of the
array. This neighboring male was probably the second
individual that was detected on the array recordings,
and these 2 individuals were perhaps using acoustic
signals to maintain their territories.

The fact that only males produced this sound in the
laboratory (Patek & Caldwell 2006), suggests another
possible function of the rumbles: female attraction. A
single male can recruit up to 2 females into its burrow
(J. Engle pers. comm.). In the communication network
of tree frogs, males use acoustic signals to attract
females, and deliberately partition the acoustic space
by adjusting either their temporal patterning or fre-
quency (Grafe 2005). The considerable variability in
temporal patterning and dominant frequencies ob -
served in mantis shrimp rumbles makes this function
highly possible. Furthermore, the differences in the
dominant frequency, number of rumbles per group,
and peak received level may convey important infor-
mation to females about a male’s reproductive status.
For example, in a study on fiddler crabs, females
showed preferences for certain characteristics of visual
signals sent by males within a chorus, and males
adapted their signals depending on the signaling be -
havior of neighboring males (Burford et al. 1998).

CONCLUSIONS

Our results demonstrate evidence of mantis shrimp
‘chorusing,’ in which multiple individuals produce
sounds simultaneously. The prevalence of rumbles
suggests that these sounds evolved to serve a critical
function in their ecology. Increasing levels of low-
 frequency anthropogenic noise (Southall 2009) may
mask these communication sounds as well as those
from myriad undiscovered and under-represented
benthic invertebrates.
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