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Abstract

Quantifying crowded and uncrowded letter recognition

by

Daniel Robert Coates

Doctor of Philosophy in Vision Science

University of California, Berkeley

Professor Susana T. L. Chung, Chair

Despite decades of research, significant mysteries remain concerning two fundamental
aspects of human visual processing: how we perceive moderately complex line shapes such as
letters of the alphabet, and how peripheral vision differs from foveal vision. This dissertation
comprises studies that address both these topics, using experiments with letter recognition
and visual “crowding”—the deleterious influence of flanking objects on identification of a
target.

Letters are well-studied psychophysical stimuli that strike a balance between degenerate
patterns such as Gabor patches or gratings, with more uncontrolled stimuli such as natural
images. Letters contain distinct spatial features that are more straightforward to quantify
than the characteristics of natural scenes, yet have a sufficient richness of information to
probe the general-purpose mechanisms of object recognition.

The last decade has seen a renewed interest in perception in the peripheral visual field,
with a particular emphasis on the phenomenon of crowding. Many researchers acknowledge
that this curious effect provides a unique window into the process of object recognition. Since
there is such a marked difference between the periphery, where crowding is potent, and the
fovea, where it is nearly absent, crowding sheds light on the dichotomy between visual pro-
cessing in the high resolution fovea versus the information-limited periphery. Understanding
crowding may illuminate general principles of biological visual processing.
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Chapter 1

Introduction: Studying visual
perception using letter recognition
and crowding

1.1 Studying mid-level and low-level vision

It is hard to imagine studying anything but the visual system. Not only is it the most
rich, vital sense for most people; investigating vision has provided a wealth of insight about
the brain, connecting both psychology and neuroscience. My particular interest has tended
towards low-level and mid-level vision. Specifically, I am drawn to those aspects that are
the earliest, or closest to the “input” of the system. Ideally, at the earliest stages of the
signal pathway the visual processing will be the most straightforward and comprehensible,
less “corrupted” by higher cognitive processes. Coming from an engineering background, I
yearn to make working models of early visual processes that can help explain the putative
mechanisms in play, and predict how the brain is able to perform its impressive feats, one of
which is interpreting the visual world.

1.1.1 Crowding

Crowding refers to the phenomenon whereby flanking objects impair identification of a target
object. The description almost sounds banal, but this phenomenon has spawned a whole
subfield of research. It is clear that objects in the periphery are harder to recognize than
objects in our direct (foveal) gaze, but the reason why this is the case is not so clear.
While trying to read words that are positioned on our peripheral retina, one can sense that
something unusual is occurring. It is not just blurring from poor acuity that disturbs our
percepts. Rather, there is some strange blending of the letters together that makes them
resist individuation.

This exact effect has been my focus during doctoral research, with experiments mirroring
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the demonstration described above. We typically run psychophysics experiments where we
ask subjects to identify peripheral crowded letters. With enough responses, we begin to
see patterns in the types of letters that are confused and thus gain clues about what is
limiting performance in crowded conditions. The cortex is known to have a very homogeneous
architecture, and it is likely that crowding exposes generic aspects of information processing
bottlenecks in the brain.

1.1.2 Letters

Letters are interesting psychophysical stimuli in their own right. In our opinion, they strike
an ideal balance between natural scenes—difficult to quantify—and degenerate stimuli such
as spots of light, gratings, or Gabor patterns. Experiments with the latter types of stimuli
have been necessary to help our understanding of how simple patterns are detected, but are
less useful in understanding identification—how complex shapes are discriminated from one
other. Furthermore, letters have the advantage of being universal and well learned, and thus
do not require extensive training.

On the other hand, it is not clear exactly how we discriminate letters from one another.
Again, it sounds almost trivial to state this, exposing a nuance with the ubiquity of vision—
it is hard to “step back” and realize the difficult problems our visual system solves each
moment. A large part of my work has been to try to understand the components of visual
recognition of single letters, across retinal locations. In this dissertation I will describe
experiments used to study this topic, including a variety of statistical methods used for
analyzing the results of letter recognition experiments.

1.1.3 Crowding with letters

My twin topics of crowding and letter recognition are synergistic. We want to understand
basic facts about object recognition such as how object components (“features”) are inte-
grated together to form a coherent percept. Crowding, which is a breakdown in this process,
gives clues. Letters are the ideal stimuli with which to probe crowding, since they also inform
our understanding of featural processing.

I first discuss the analysis of letter identification experiments in Section 2.2. Incidentally,
crowding errors will be analyzed, but crowding is not central to understanding the analysis
methods described. Next, in Section 2.3, I discuss computational modeling of the letter
recognition process. Here only single letters are considered. In Section 3, I present the
results of several crowding experiments. The first experiment (Section 3.2) employs artificial
“letter-like” stimuli, in order help advance our understanding of feature processing in simple
shapes, both crowded and uncrowded. The second and third experiments (Section 3.3 and
Section 3.4) discuss experiment with Tumbling-E stimuli, and manipulate aspects of the
stimuli in various ways to test how the extent of the crowding interactions vary, which may
reveal aspects of the neural mechanisms underlying crowding.
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Chapter 2

Letter recognition

2.1 Approaches to the study of letter recognition

A primary goal of my work has been to study letter recognition, particularly aspects related
to the legibility and visual similarity of letters. That is, how letters are identified utilizing
only low-level, perceptual factors. It is useful to differentiate two aspects of the study of
letter recognition that are often intertwined: analyzing letter identification confusions and
modeling the process of letter recognition.

First, in Section 2.2 I will discuss how to analyze the results of letter recognition ex-
periments. This can be done with the hope that studying letter identification may provide
insight into general-purpose object recognition, which is still poorly understood. However,
there may also be practical reasons: designing letter charts, making new fonts to mitigate
discrimination difficulties (i.e., reading in patients with central vision loss, or developmental
abnormalities), studying effects of font characteristics such as boldness, etc. On the other
hand, there is also interest in understanding the process of letter recognition, which I discuss
in Section 2.3. The purpose here is to try to better understand the mechanisms involved in
object recognition by humans, at conceptual, algorithmic, and/or neural levels. The insights
may be for purely scientific reasons, although improving computer vision algorithms is an
incidental benefit that I will discuss.

Originally, the study of letter recognition was spearheaded by optometric researchers, who
were prevalent in visual perception research. Others were psychologists interested in reading
or development. More recently, theoretical researchers from psychology as well as applied
computer vision researchers have tried to understand the mechanisms of letter perception.
Clearly, however, there are many researchers and approaches that blur these distinctions. I
situate our laboratory in this camp, trying to integrate theory and practical applications.

A tangential goal driving research from the computer vision field is how to build better
computer vision algorithms using insights from the studies of biological recognition. Hu-
mans still outperform machines in many tasks—the success of the online image verification
“CAPTCHAS” demonstrates this. Therefore, many computer scientists turn to inspiration
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from the human visual system for ideas on how to improve their algorithms. Some researchers
come from a neuroscience or artificial intelligence background already (David Marr, Geoff
Hinton, Fukushima), while others are seemingly driven purely by engineering concerns.

For both these aspects of letter recognition, my interest lies primarily in trying to un-
derstand low-level, purely perceptual factors, independent of other effects such as letter
frequency, cognitive development, or word context. From a general standpoint, letters are
useful stimuli because they may help illuminate the poorly understood task of object recog-
nition. There is some element of memory involved, but since letters are so well learned (Pelli
et al. [2006]), it can be assumed that the subject is primarily discriminating between fa-
miliar forms in a purely perceptual way. High level effects such as word context and letter
superiority are minimized by using random strings, although subject biases may still be an
important high-level cognitive factor in the recognition process. We account for this using
the Luce biased choice model (Luce [1963]).

2.2 Letter recognition: analyzing the results

Confusion matrices: everyone’s got ‘em, no one knows what to do with them.

For quite some time, researchers have been interested in the types of errors made by
subjects during letter identification tasks. In this chapter I present a historical overview of
this endeavor, and an in-depth look at techniques that have been used to try to make sense
of identification confusions.

I then document how I applied these techniques to letter recognition data we have col-
lected in the lab. For our experiment, explained in more detail in Section 2.2.5, five subjects
viewed letters which were presented at 10◦ eccentricity in the lower visual field, and embed-
ded in a sufficient amount of noise to induce difficulty. There were two conditions, one in
which letters were presented alone, and one in which letters were closely surrounded by two
other letters—“crowded,” which is known to impair performance. The basic idea is that the
confusion matrix analysis techniques described can help illuminate the differences between
the errors made in these two conditions.

2.2.1 Introduction

“Confusion matrices” are the preferred format to report results of identification experiments
with stimuli having multiple alternatives. This method simply involves the presentation of
responses in an NxN matrix (where there are N possible stimuli). The stimuli presented
are denoted by rows, and observer responses are given in columns. Matrices can contain
raw frequency counts, or can be normalized per stimulus presentation such that each row
adds up to 1.0. The contents of each cell on the diagonal represents a correct answer, and
off-diagonal entries correspond to errors.
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An excellent review of classic confusion matrices has been written by Mueller and Weide-
mann ([2012]). Mueller has also built a website providing a wealth of data transcribed from
historical papers (Mueller [2014]). I have downloaded and analyzed some of the classical con-
fusion matrices he has made available. In the manuscript (Mueller and Weidemann [2012]),
the authors highlight the difficulties that arise when trying to extract visual similarity from
confusion matrices, including how the specific testing conditions influence results. Further-
more, it is shown that with carefully controlled experiments, three response factors can be
revealed: the legibility of individual letters, the similarity between letters, and observer bias.

A primary goal of my research has been the analysis of these confusion matrices. More
specifically, what reliable information can be gleaned from these complex matrices? When
are whole matrices (or constituent cells) statistically distinguishable? What models can
summarize (or usefully compress) the data contained in a large confusion matrix?

An important text for the analysis of confusion matrix for the social sciences is Wickens’
book “Multiway Contingency Tables Analysis for the Social sciences” (Wickens [1989]). From
a purely statistical perspective, the fundamental text is Bishop et al.’s “Discrete Multivariate
Analysis” (Bishop, Fienberg, and Holland [1975]). While these textbooks offer good descrip-
tions of the techniques for performing generic analyses on matrices (such as row/column
association and independence, calculating measures of goodness of fit, etc.), their guidance
is lacking for the types of operations we are interested in—extraction of “patterns” (i.e.,
groups of confusable letters, or summarizing relationships between the letters) from large
(i.e., 26×26, 10×10) confusion matrices. Social scientists are typically more concerned with
how continuous variables (factors) interact to influence a continuous outcome measure, as
opposed to few variables with many categorical possibilities. If the number of dimensions is
small (one or two) signal detection theory is applicable, but for three or more stimulus di-
mensions, the multidimensional extension of signal detection theory–Ashby and Townsend’s
general recognition theory (GRT) (Ashby and Townsend [1986])—is surely powerful, but
appears impenetrable to non-experts.

Instead, the best guide in the landscape relevant to letter recognition that I have encoun-
tered is a 1992 paper by J. E. K. Smith entitled “Alternative biased choice models” (Smith
[1992]). In this paper, Smith shows how, given several subject confusion matrices for an
LCD letter identification task, exploratory analysis can advance from inspection of the raw
confusion matrix (gross patterns of percent correct, etc.), to application of the Luce choice
model to identify/remove bias, and even further to extensions relevant to a specific response
hypothesis. It is refreshing that the author is honest about the exploratory nature of the
analysis while proceeding systematically using principled methods.

2.2.2 Background

The earliest approach to studying letter recognition involved simply enumerating the errors
that were made when viewing letters from a distance. Thus the errors manifested in this
case are due to the reduced size of the characters. A pioneering study in this area was
the work of Sanford ([1888]), who in 1888 tested identification of isolated letters in many
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different fonts and determined the “relative legibility” of letters by varying the viewing
distance to find the farthest distance (i.e., smallest size) at which subjects could reliably
identify each letter with a certain accuracy. He thus was able to characterize the relative
difficulty of letters in the various fonts. He also listed the letters that were confused with
each target letter. Since then, there have been many listings of letter confusion errors from
a variety of perspectives, including other classic studies of font legibility (Tinker [1928]),
to complex models of perceptual identification (many results summarized in Section 2.3,
since Townsend ([1971a]). A voluminous reference on alphabetic confusion matrices is Mueller
and Weidemann ([2012]), which lists many of the confusion matrices that have informed my
dissertation. Furthermore, they have included relevant studies that measured letter similarity
matrices using alternate methods, including subjective similarity ratings (Boles and Clifford
[1989]; Keunnapas and Janson [1969]; Podgorny and Garner [1979]), response or saccade
times (Jacobs, Nazir, and Heller [1989]; Podgorny and Garner [1979]) or a forced-choice task
of discriminating letter pairs (Mueller and Weidemann [2012]).

Confusion matrix analysis reached a peak in the 1980s, with a variety of manuscripts
publishing raw confusion matrices, and correlating empirical or model matrices under differ-
ing conditions (Townsend [1971a]; Townsend [1971b]; Gilmore [1985]; Watson and Fitzhugh
[1989]; Coffin [1978]). More recently, and related to the current work, researchers have mea-
sured letter identification under the condition of “crowding,” where adjacent letters worsen
identification of the target. Several notable examples explicitly list crowded (Liu and Arditi
[2001]; Bernard and Chung [2011]; Bedell et al. [2013]) or peripheral (Reich and Bedell [2000])
confusion matrices. Two further recent studies that published graphical crowded confusion
matrices (two-dimensional matrix image plots without numbers) are Hanus and Vul ([2013])
and Freeman, Chakravarthi, and Pelli ([2012]).

Of the aforementioned confusion matrices, the last two (Hanus and Vul [2013]; Freeman,
Chakravarthi, and Pelli [2012]) were used as components of recognition models, with upper
case letters. Specifically, Hanus and Vul ([2013]) used the confusion matrix in a model for
predicting crowded errors by randomly substituting letters using the measured confusion
matrix. Freeman, Chakravarthi, and Pelli ([2012]), on the other hand, simply used the
confusion matrix to identify the most similar and most dissimilar letter pairs for each target
letter, and used these as input for a mixture model. Reich and Bedell ([2000]) counted
and qualitatively identified significant confusion pairs of Sloan-like capital letters, while Liu
and Arditi ([2001]) compared letter pairs between wide and narrow spacing conditions of
upper case letters. Bedell et al. ([2013]) qualitatively noted the similarity and differences
between confusion matrices under differing conditions of luminance and crowding with the
10 Sloan letters. Lastly, Bernard and Chung ([2011]) used the confusion probabilities of
lower-case letters (which they called a “similarity score”) and showed a positive correlation
between flanker similarity (i.e., letter confusion probability) and an increase in error rate
with crowded trigrams (three closely spaced letters).

Despite their utility, the validity of confusion matrix analysis has not been without con-
troversy. Even as early as 1969, an article titled “Visual confusion matrices: fact or arti-
fact?” (Fisher, Monty, and Glucksberg [1969]) challenged the utility of pursuing this path.
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The non-agreement of confusion matrix correlations from different experiments presented
difficulties for defenders of this approach (van der Heijden, Malhas, and Van Den Roovaart
[1984]). A straightforward explanation, given by Gilmore ([1985]), is that the specific font is
critical when comparing confusion matrices. Whether the effects of different stimulus degra-
dations (short durations, low contrast, added noise, peripheral presentations, etc.) can be
reliably differentiated has not been systematically explored. More recently, Denis Pelli has
observed that using confusion matrices to attempt to identify features (an approach covered
in the next chapter) has been a mostly fruitless venture (Pelli et al. [2006]). Nevertheless,
we forge ahead!

2.2.3 Inducing errors

To yield usable confusion matrices, there must be sufficient identification errors to populate
cells of the confusion matrix. This section summarizes some of the methods used to induce
errors. One straightforward method is to reduce the size of the stimulus until some threshold
level of identifiability is reached. This can be accomplished in one of two ways. One of the
oldest methods is to change the distance between the observer and a fixed-size target, either
physically (Sanford [1888])), or optically using lenses or mirrors. Alternatively, the stimulus
itself may be manipulated, such as the shrinking letters on successively lower rows of a letter
chart, or by scaling letters dynamically with a computer. With these size-based methods, the
sampling resolution of the system is potentially being probed. This is almost certainly true
for basic distinctions such as differentiating an “O” from a “C” at threshold. In this case, the
subject is simply detecting a gap in a circle, so the threshold detectable gap will constitute
a lower limit. With more complicated alphabetic distinctions, how exactly humans use the
sampling-limited information is unclear.

Peripherally-viewed stimuli are subject to greater sampling limitations than foveally-
viewed stimuli, yielding more errors. Are the letter errors induced in both conditions the
same? Bouma studied identification of lowercase letters in exactly these two conditions:
small foveal letters and larger letters at 7◦ to the left or right of fixation, and published the
resultant confusion matrices (Bouma [1971]). While he did identify what appear to be distinct
perceptual representations for the two conditions using a technique akin to multidimensional
scaling (Section 2.2.4.8), he felt that the errors observed were “largely similar” and did not
pursue the topic more, instead averaging the confusion matrices.

Direct evaluation of a possible difference between peripheral versus foveal letter recog-
nition was performed by Higgins, Arditi, and Knoblauch ([1996]). These authors tested a
hypothesis that mirror-image letters might be harder to discriminate in the periphery be-
cause of peripheral deficiencies in processing phase information (Bennett and Banks [1986]).
Importantly, Higgins, Arditi, and Knoblauch ([1996]) scaled their stimuli large enough to
account for sampling differences in the periphery versus the fovea (discussed further in Sec-
tion 3.3.9.2). By comparing detection and identification, they found that differences in
performance could be explained purely by sampling, refuting the phase hypothesis of foveal
versus peripheral differences for letter recognition. Thus, peripheral stimuli scaled to the
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appropriate size exhibit the same errors as foveal stimuli. On a related note, Chung ([2010])
did find that crowded mirror-image letters evidenced a peripheral deficit versus non-mirror-
image letters, even after size-scaling.

Shortening the duration is another means of inducing errors. Before computers were read-
ily available, tachistoscopes were used to present letters briefly enough to achieve a certain
level of errors. This was the method used by Townsend ([1971b]); Gilmore et al. ([1979]),
while van der Heijden, Malhas, and Van Den Roovaart ([1984]) used an early PDP computer
to achieve the same end. One might suspect that this approach to degrading the stimulus
is related to lowering the contrast (or luminance) of each letter, another technique that has
been used (Watson and Fitzhugh [1989]; Gilmore et al. [1979]; van der Heijden, Malhas, and
Van Den Roovaart [1984]; van Nes and Jacobs [1981]). A related technique for degrading a
stimulus is simply blurring the target, either optically or with a computer (Loomis [1990]).

A recent novel technique is that of “Bubbles” (Gosselin and Schyns [2001]). This tech-
nique limits information in the stimulus by opening Gaussian apertures of varying size and
location at potentially different times. The proponents of this method applied it to alpha-
betic letters (Fiset et al. [2008]). Their goal was not to identifying letter confusions per se,
but rather to see what spatial information led to subject responses, much like a classification
image approach. When applied to upper and lower case letters, this method revealed that
terminations are by far the most important cue used by observers in this task. However,
the technique itself is not without controversy (Murray and Gold [2004]). It has been argued
that the unique way in which selective information is revealed with this method may limit
the generality of the results.

Spatial filtering is a further approach to increasing the difficulty of letter identification.
This methods has been used extensively, for a variety of purposes, including characterization
of the spatial channels involved in letter recognition (Chung, Legge, and Tjan [2002]). Con-
fusion matrices resulting from spatial filtering have be studied preliminarily (Chung, Kumar,
and Coates [2013]).

So far, all of the methods described involve limiting the information present in the stim-
ulus. An alternative approach is to add noise on top of the stimulus. This method was
first used with letters made of dots, with random dot arrays of varying density added (Uttal
[1969]). More recent research has used added noise extensively, especially to characterize
performance versus an “ideal observer” (Pelli, Farell, and Moore [2003]) or, using spatially
filtered noise, to identify critical spatial frequency channels (Solomon and Pelli [1994]).

Lastly, and in some ways an extension of added noise, other stimuli present on a dis-
play contribute to task difficulty (Eriksen and Eriksen [1974]). Adding flanking letters suffi-
ciently close causes crowding (Bouma [1970]). Thus, the studies listed earlier (Bernard and
Chung [2011]; Liu and Arditi [2001]; Bedell et al. [2013]; Hanus and Vul [2013]; Freeman,
Chakravarthi, and Pelli [2012]) belong in this category.
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2.2.4 Confusion matrix analysis methods

Many in the vision community have been interested in comparing confusion matrices. The
first real quantitative attempt at mathematically modeling data such as a 26x26 confusion
matrix was by Townsend ([1971a]), whose manuscript continues to be an exemplar for the
field, employing many of the methods I will discuss. Often, the goal will be to validate a
model of recognition proposed by a researcher. Empirical and simulated matrices may simply
be correlated, although it has been observed that the strength of the diagonal dominates the
analysis, so it is important to also separately compute the correlation of off-diagonal entries
(errors) (Gilmore [1985]; Watson and Fitzhugh [1989]). Sum of squared errors (Townsend
[1971a]; Townsend [1971b]), and the percentage of variance explained (Geyer and Dewald
[1973]) have all been used in this way.

There does not seem to be a rigorous metric for how “good” different values of correlation
are. Instead, models can be chosen based on superior fitness. Likely the best method will
be based on a Bayesian approach that incorporates the space of possible outcome matrices
from a given model. Then the goodness-of-fit may yield an accurate estimate of how likely
the model fits the data, versus possible alternatives. Nevertheless, a lingering difficulty with
using a single measure of goodness-of-fit with a multivariate outcome such as a 26x26 matrix
is that there is still an unavoidable trade-off between the contributions of small errors in
many cells versus large errors in a few cells. The following is a list of possible measures that
could be used to summarize a confusion matrix in one number, or several numbers. The last
item has not been explored, as far as we know.

• Mean of (normalized) diagonal, corresponding to percent correct

• Count of small (zero or some small thresholded) cells

• Amount of symmetry across the diagonal (rows vs. columns) (Wickens [1989]): if
completely symmetric, confusions between a given pair of letters is the same in both
“directions.” (i.e., the number of errors and false alarms are the same). Most empirical
letter confusion matrices are not symmetric, having significant asymmetric contribu-
tions.

• Moments of the distribution of cell coefficients, on the diagonal, off-diagonal, or all
entries, using either raw counts or normalized proportions. Is the distribution of con-
fusion matrix elements peaky? Are there heavy tails? What distribution describes the
coefficients best?

2.2.4.1 Sum-squared error

The simplest metric for the agreement between two matrices is the sum of the squared errors
between corresponding entries. Townsend ([1971a]) for example, presents several different
proposals for modelling letter recognition, evaluated using the sum of squared deviations
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versus the empirical observations. Mathematically, the operation is performed on two N×N
confusion matrices P and Q comprising elements of the form pij and qij, respectively.

SSE =
∑

(pij − qij)2 (2.1)

2.2.4.2 Correlation coefficient (Pearson’s r)

A further possibility for the correspondence between two matrices is the correlation coeffi-
cient, also known as Pearson’s r. As the following equation shows, this is the ratio between
the covariance of corresponding entries and the product of the standard deviations of the
matrices.

ρP,Q =
cov(P,Q)

σPσQ
(2.2)

For two confusion matrices defined as above, this would be realized as the following,
where x̄ is the typical arithmetic mean.:

r =

∑
(pij − p̄)(qij − q̄)√∑

(pij − p̄)2
√∑

(qij − q̄)2
(2.3)

2.2.4.3 Pearson X2 goodness of fit

A further possibility for comparing the fit of a model (with expected cell entries) to empirical
data (with observed entried) is the Pearson X2 statistic, equation 2.4, which is distributed
as a χ2 distribution indexed by the degrees of freedom of the model.

X2 =
∑ (observed− expected)2

expected
(2.4)

2.2.4.4 Likelihood-ratio (G2)

The likelihood ratio statistic (Wickens [1989]) is defined abstractly as Equation 2.5, and
explicitly (for a confusion matrix P as defined above) in Equation 2.6, with the “hat” term
p̂ij representing the model predictions. The logarithm is the natural logarithm.

G2 = 2
∑

(observed)log(
observed

expected
) (2.5)

G2 = 2
∑

pijlog(
pij
p̂ij

) (2.6)
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2.2.4.5 Matrix comparison with likelihoods

When comparing two different confusion matrices using a likelihood statistic, there is obvi-
ously an asymmetry if the numbers are directly substituted as either of the two variables
using the previous two methods. Instead, a maximum likelihood estimate can be computed
that represents something akin to an average of the two matrices (weighted by the row
counts), since cells with smaller possible values (for example due to fewer presentations of a
stimulus) should affect estimates less, due to uncertainty. This is a straightforward applica-
tion of Bayes rule. The likelihood that the two matrices are the same is the sum of the G2

statistics of the two matrices versus the maximum likelihood solution. A subtlety of using
this statistic is how to deal with zero terms. The standard practice is to zero any individual
terms for which the denominator is zero.

2.2.4.6 Confusion matrix symmetry

For many of the techniques about to be described, row/column symmetry is an important
component. A matrix has this symmetry exactly if pij = pji for all cells. In terms of
psychophysical results, this means that for each letter pair (i,j), the proportion of “i” re-
sponses when “j” is presented is (approximately) the same as “j” responses to presentation
of “i.” There is a formula for the amount of symmetry in a confusion matrix P, which is
given in Equations 2.7–2.9. This equation splits the matrix into symmetric and asymmetric
components, allowing the percent of asymmetry to be quantified.

M =
P + P ′

2
, N =

P − P ′

2
, (2.7)

Proportion symmetric =

∑
m2

ij∑
p2ij

(i 6= j) (2.8)

Proportion asymmetric =

∑
n2
ij∑
p2ij

(i 6= j) (2.9)

Conversion to a symmetric matrix may be necessary, for example to apply multidimen-
sional scaling or clustering. There are several numerical methods for symmetrizing a matrix.
Simplest is taking the average of the two transposed cells. To convert a matrix P into a
symmetric matrix Q, Equation 2.10 is an element-by-element expression for this average.
The procedure can also be expressed concisely in matrix notation, as Equation 2.11.

qij =
pij + pji

2
(2.10)

Q =
P + P ′

2
(2.11)

This formula was used by Reich and Bedell ([2000]), although the authors do discuss
an alternative, given in Equation 2.12. The alternative method was introduced by Shepard
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([1962]) in the context of multidimensional scaling (without the square root) and has been
used in several relevant manuscripts (Gervais, Harvey, and Roberts [1984]). Interestingly,
this expression for symmetrizing cells is identical to the “similarity” coefficients that result
from a maximum-likelihood fit of the Luce choice model introduced in the next next section.

qij =

√
pij × pji
pii × pjj

(2.12)

2.2.4.7 Luce choice model (matrix quasi-symmetry)

The Luce choice model (Luce [1963]) is an attempt to isolate cognitive, higher-level decision
factors (specifically, response bias) from purely low-level (i.e., perceptual similarity) aspects.
In spirit it is both an analysis method and a model of human decision making (Luce [2005]).
The method involves decomposing a matrix into two terms: a response bias vector, and a
similarity matrix capturing the (symmetric) similarity between each pair of stimuli. The
bias vector indicates an inherent preference towards giving a certain response, independent
of the presented stimulus. The similarity matrix, on the other hand, is assumed to be entirely
determined by the stimulus.

The Luce choice model for any confusion matrix can be computed in a maximum like-
lihood fashion with an exact solution using an algorithm described below. The vector of
biases are called βjs, and the remaining elements, which comprise the symmetric similar-
ity matrix, are termed ηijs. Note that from statistics this is known as a “quasi-symmetry
model” (Bishop, Fienberg, and Holland [1975]) and thus has a solid statistical/mathematical
underpinning, which has not always been appreciated.

Researchers have used the Luce choice model in several ways:

• Comparing the parameters (ηs and βs), for (bias-free) parameter correlation (Gilmore
[1985]) (versus comparing whole confusion matrices). We have utilized this method in
Section 2.3.2.

• Using the decomposition as a pre-processing step, for further processing of the resul-
tant symmetric similarity matrix, such as multidimensional scaling (Section 2.2.4.8) or
additive clustering (Section 2.2.4.9).

In the past, researchers would use iterative nonlinear function fitting techniques (Gilmore
[1985]; Townsend [1971a]; Townsend [1971b]) and arbitrary methods of estimating zero
terms (Keren and Baggen [1981]), since it is crucial there are no zeros in the matrix. One
way is to replace those numbers with an arbitrary constant such as, for example, 0.05, or to
determine a value iteratively (Gilmore [1985]). This point was criticized by Smith ([1982]),
commenting on Keren and Baggen ([1981]), as there is a single maximum likelihood solution
determined by the model, a fact little understood previously. To determine the maximum
likelihood estimate of the matrix involves transforming the original matrix into one satisfying
the constraints of quasi-symmetry.
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The fitting algorithm is derived from Iterative Proportional Fitting (IPF), and was
described in Bishop, Fienberg, and Holland ([1975]), and was also didactically presented
in Smith ([1982]). It is a convergent algorithm, rather than a search algorithm. Like IPF, a
starting matrix is initialized with arbitrary values, often all ones. Then the first step of one
iteration is to adjust the cells multiplicatively such that the row marginals are maintained.
The next step is to adjust the cells such that the column marginals are maintained. Finally,
the last step is to enforce that the underlying similarities are symmetric. These three steps
are sufficient to enforce the model. The steps are repeated until there is no measurable
change in the estimated values, and the resulting matrix represents the maximum likelihood
fit of the model. The parameters can then be extracted using the following two equations,
computed on the expected values p̂ij (Smith [1982]).

η̂ij =

√
p̂ij × p̂ji
p̂ii × p̂jj

(2.13)

β̂j =
1

N∑
k=1

√
p̂jk×p̂kk
p̂kj×p̂jj

(2.14)

2.2.4.8 Multidimensional scaling

Multidimensional scaling (MDS) is another technique that constitutes both a method of
analysis and a theory of human decision-making. Roger Shepard Shepard ([1958]) showed
that analysis of the errors made during perception of Morse code symbols could yield useful
insights about the possible “feature dimensions” that subjects use to perform discriminations
in this modality. That is, mental representations of objects can be conceptualized as a vector
of values that specify locations in some high dimensional space. When making a judgment
about the identity of a stimulus at the threshold of performance, the values will be uncertain
due to physical or neural noise, so the “nearest” stimulus is chosen (in cognitive space),
determining which stimuli are more likely to be confused.

Since measures of distance in any space is symmetric, the contributing similarity (or
dissimilarity) matrices must be symmetric. Tversky was one of the most vocal critics of
spatial models (Tversky [1977]; Tversky and Gati [1982]), on the grounds that strong directed
confusions (which he had collected many didactic examples of) were lost. To explicitly
account for the observed asymmetries in empirical data, there have been several theoretical
proposals, including those based on stimulus density in the cognitive space (Krumhansl
[1978]). For the present analysis however, a principled approach is to leverage the Luce
choice model as a “preprocessing” step, which is described in subsequent sections. The Luce
choice procedure determines a bias vector as part of its computation, which accounts for the
asymmetry. This combination is known as the “MDS-choice” model (Nosofsky [1985]), and
has been utilized successfully in a number of situations.
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To transform from a confusion matrix of cell counts or probabilities to a distance matrix
requires an additional step. As originally proposed by Shepard (Shepard [1957]), the proba-
bility of confusions between stimuli is exponentially related to the psychological distance, as
shown in Equation 2.15. It has been debated that the squared exponential distance could
be more appropriate in some cases (Nosofsky [1985]), constituting a “Gaussian” form, but
the exponential model is sufficient for our purposes.

ηij = e−dij (2.15)

2.2.4.9 Additive clustering

Traditional clustering is a common analytical technique, where each item is “labeled” in
way that captures some proximity relationships in the data—items near each other should
belong to the same cluster. Additive clustering is an extension of this technique. In additive
clustering, an item can belong to multiple clusters, which gives it relevance to a feature-based
decomposition (see next chapter). Specifically, in the additive clustering model, objects are
identified by binary membership in a set of “classes.” As opposed to the traditional model
of clustering, which dictates that each object belongs to one class or cluster, in additive
clustering objects can belong to multiple classes. Furthermore, there is no restriction to
cluster membership, which distinguishes additive clustering from models such as hierarchical
clustering (popularized in dendrogram trees). The formal mathematical definition is very
simple. First, class membership is defined, for m classes and n stimuli, by an n×m binary
matrix where fik = 1 if stimulus i is in class k, and 0 otherwise. Furthermore, each cluster
is assigned a “weight,” which can be interpreted as importance or relevance to the subject.
Therefore, the “similarity” of two stimuli i and j will be:

ŝij =
m∑
k=1

wkfikfjk (2.16)

In words, this equation states that the similarity is simply the sum of the weights of
the classes in which both stimuli are members. For all other classes, one of the f terms
in Equation 2.16 will be zero. The mathematical simplicity of the model makes it very
attractive, but a downside is that determining the values of the binary f coefficients is
a very difficult optimization problem. Elaborate methods have been proposed (Shepard
and Arabie [1979]), but Lee recently introduced a simple and elegant method (Lee [2002];
Lee [2001]), inspired by genetic algorithms. The algorithm is stochastic, proceeding by
“randomly” mixing together the binary matrices of optimal solutions, analogously to the
process of biological reproduction whereby optimization is accomplished by evolutionary
forces of natural selection. Similar algorithms have been successful in solving optimization
problems which are difficult to solve with deterministic procedures (Mitchell [1998]).
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Subject Condition Stimulus contrast Num. Trials Prop. Correct
AXL single 0.28 9400 0.596
KMA single 0.30 7000 0.562
RXK single 0.35 6097 0.585
RXL single 0.28 6000 0.638
YTY single 0.2 5950 0.561
AXL crowded 0.5 7000 0.528
KMA crowded 0.5 7000 0.514
RXK crowded 0.5 5200 0.375
RXL crowded 0.475 6000 0.58
YTY crowded 0.3 6120 0.361

Table 2.1: Subject stimulus contrast and performance.

2.2.4.10 Summary of theoretical methods

The previous sections described a variety of techniques that have been used in the past to
analyze letter identification results. This list is by no means exhaustive. For example, den-
drograms resulting from hierarchical clustering have been used to visualize letter confusion
results (Grainger, Rey, and Dufau [2008]). Methods known as “3-way” or “procrustean”
have been used to capture individual differences in the context of MDS models (Cox and
Cox [2000]).

The research area is not as vibrant as it once was, but there are still new methods being
developed. For example, MJ Brusco recently published papers on how to extract subsets and
concordant groups from confusion matrices (Brusco and Steinley [2006]; Brusco and Cradit
[2005]). Machine learning, which is currently a highly active research area, will also likely
contribute additional methods that could be applied to confusion matrices. Algorithms for
additive clustering continue to be developed using more sophisticated techniques (Tenenbaum
[1996]; Ruml [2002]), including Bayesian approaches (Navarro and Griffiths [2008]).

We turn now to an empirical application of these techniques. An experiment was run to
acquire confusion matrices from several individuals under a pair of conditions. Ideally, for a
given confusion matrix, these statistical procedures should be able to reveal patterns which
are consistent across subjects, but different amongst the two conditions.

2.2.5 Experimental methods

As alluded to above, one goal in pursuing confusion matrix techniques is understanding the
errors made when letters are subject to the phenomenon known as “crowding.” Specifically,
when letters are surrounded by other letters, particularly in the periphery, identification is
hindered. We were interested in determining whether the particular patterns of errors in this
condition could be differentiated from errors under other conditions, such as when letters
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Figure 2.1: Example trigram stimulus in noise.

are presented alone in the periphery. The empirical study described next was performed to
pursue this goal.

Five young subjects participated in the study. All had normal vision and used their
standard optical correction. Subjects were seated in a dark room 50cm from the 15 in.
CRT display, which used an electrical attenuator to provide finer contrast granularity (Pelli
and Zhang [1991]), although this study did not demand accurate measurement of contrast
threshold. Stimuli were rendered on a Macintosh computer using MATLAB and Psych-
toolbox (Brainard [1997]). Each pixel subtended approximately 2.1 minutes of arc. The
apparatus used in this study has been described previously in Chung, Levi, and Li ([2006]).

Stimuli were presented for 150 milliseconds at 10◦ eccentricity in the lower visual field.
The stimuli comprised one or three lower case Times-Roman letters, depending on the con-
dition. In the single condition, a single letter was presented at 10◦ below fixation, with a
luminance low enough to induce sufficient errors. In the crowded condition, the target letter
was flanked on the left and right side by other letters, different from the target. A higher
stimulus intensity was used in the crowding condition to roughly equate the two conditions,
since the flankers cause additional errors.

The background of a central 256×256 pixel image patch and stimulus letters were ren-
dered using Gaussian noise, scaled to yield a specified average luminance level. Figure 2.1
is a depiction of a typical stimulus. The contrast of the letters varied per-subject to yield
reasonably consistent levels of performance, as indicated by Table 2.1. The contrast of the
background noise was fixed at 0.3 for all subjects and conditions. The letter size (in terms
of the x-height, or the height of an “x” character) was fixed at 50 pixels, which corresponded
to a retinal subtense of 1.7◦. Letter spacing for the crowded condition was fixed at 1× the
x-height of the letter.

2.2.6 Results

The results of each subject in the two conditions can be presented as a confusion matrix
with ordinal cell counts as described above. This raw data is given in an Appendix on
page 130, though normalized versions of the data will typically be used in order to compare
across subjects. Figure 2.2 presents an example of a normalized confusion matrix for subject
AXL—the raw cell counts are provided in Figure A.1. By convention, stimuli are denoted
by the rows, from “a” (top) to “z” (bottom), and responses are given in the columns. The
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0.270.000.000.170.020.010.050.060.000.010.030.000.020.050.020.010.140.020.020.000.020.000.010.020.010.03

0.000.600.000.010.010.000.020.150.000.010.020.000.000.020.070.050.010.000.000.000.020.010.010.000.000.00

0.010.010.290.010.210.000.080.010.000.010.000.000.000.000.090.000.020.010.200.000.010.000.000.010.010.01

0.000.000.000.780.010.000.010.010.000.040.010.000.010.000.010.000.040.000.000.000.050.000.000.000.020.00

0.010.000.090.020.420.000.100.000.010.000.000.000.000.000.080.000.010.020.190.010.010.010.000.000.010.01

0.000.000.000.000.010.150.010.020.020.050.070.030.000.000.000.010.000.600.010.000.010.000.000.000.000.00

0.000.000.000.010.020.010.820.010.000.000.010.000.000.000.010.000.000.010.090.000.000.000.000.000.000.02

0.000.060.000.010.000.000.010.680.010.010.080.000.010.050.000.010.000.020.010.000.040.000.010.000.010.00

0.000.000.000.020.010.010.010.030.200.160.060.100.000.000.000.000.010.310.010.000.030.000.010.000.010.01

0.000.000.000.020.000.010.010.010.040.770.020.020.000.000.000.000.020.050.000.000.010.000.000.000.010.01

0.000.010.000.000.000.010.000.000.000.010.920.000.000.000.000.000.000.010.010.000.000.000.000.020.000.00

0.000.000.000.010.000.030.000.030.120.160.100.270.000.000.000.000.010.240.000.000.010.000.000.000.010.00

0.000.000.000.000.000.000.010.040.000.000.010.000.840.030.010.010.000.010.000.000.020.000.030.000.000.00

0.030.010.000.020.000.000.000.260.000.010.010.000.060.370.030.040.030.030.000.000.070.000.010.000.000.00

0.010.030.010.010.010.000.010.010.000.010.000.000.000.030.730.030.030.010.030.000.020.010.020.000.010.00

0.000.010.000.000.010.000.010.060.000.000.010.000.010.010.030.780.000.050.010.000.010.000.000.000.000.00

0.010.000.000.080.000.000.020.030.000.010.010.000.000.010.020.010.760.010.000.000.010.000.010.000.010.00

0.010.000.020.010.010.030.010.010.020.050.040.010.000.000.010.020.010.690.010.000.010.010.000.010.000.02

0.000.010.000.020.020.000.130.010.000.010.030.000.000.000.010.000.020.020.630.000.010.000.010.050.010.02

0.010.010.010.010.020.030.010.010.060.020.120.070.000.010.010.010.010.460.010.060.030.000.010.000.010.02

0.010.020.000.110.010.000.010.070.000.010.020.000.020.040.030.010.040.020.000.000.530.000.050.000.020.00

0.000.010.000.000.000.000.010.000.000.000.020.000.010.000.000.000.000.030.020.000.020.560.130.040.160.00

0.010.000.000.010.010.010.000.000.000.000.010.000.000.010.000.010.000.000.000.000.020.040.860.010.010.00

0.000.000.010.000.010.000.010.000.000.010.020.000.000.000.000.000.000.010.030.000.000.010.030.830.030.01

0.000.000.000.000.000.000.000.010.000.010.000.000.000.000.000.000.000.010.020.000.000.070.040.040.780.01

0.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.010.010.000.000.010.010.010.010.92 0.0
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0.6

0.7

0.8

0.9

Figure 2.2: Normalized single-letter confusion matrix for subject AXL.
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0.260.010.000.040.120.010.040.090.010.010.030.000.050.010.010.010.070.020.040.000.030.000.050.010.010.05

0.000.520.010.010.020.020.010.190.000.030.060.000.000.000.010.020.020.010.010.000.000.000.000.000.020.01

0.020.020.280.040.290.010.040.030.000.020.010.000.020.000.040.000.080.010.010.000.010.000.020.010.000.03

0.010.010.000.510.020.020.020.120.000.040.080.000.010.000.000.000.050.020.000.000.030.000.020.010.000.01

0.010.020.020.010.650.010.040.010.000.000.010.000.020.000.030.010.030.010.030.000.010.000.010.010.010.04

0.010.010.000.010.010.560.010.070.020.030.070.000.020.000.000.000.010.100.010.000.010.010.000.010.010.02

0.000.000.000.000.040.010.850.010.000.000.000.000.010.000.000.000.020.000.030.000.010.000.000.000.000.01

0.000.010.000.010.000.030.000.660.000.040.070.000.060.000.000.000.000.020.010.000.030.000.020.000.010.01

0.010.000.000.000.000.050.000.090.340.200.050.010.010.000.000.000.010.070.000.020.040.000.010.010.010.03

0.000.000.000.000.000.010.000.030.020.810.020.000.000.000.000.000.030.020.000.000.020.010.000.000.030.01

0.000.010.000.030.010.010.000.130.000.030.720.010.000.000.000.000.030.000.000.000.000.000.010.020.010.00

0.000.010.000.050.000.080.000.250.030.090.110.230.000.000.000.000.020.050.000.010.020.000.020.010.010.02

0.010.000.000.030.010.010.010.160.000.030.020.000.490.040.000.000.020.040.020.000.030.000.040.010.010.02

0.000.010.000.010.020.010.030.190.010.010.020.000.310.180.000.020.010.030.010.000.040.010.020.010.020.02

0.010.060.010.010.110.000.040.010.000.020.020.000.010.010.470.030.080.000.010.000.010.010.030.010.010.02

0.000.000.000.000.000.010.030.070.000.040.020.000.020.000.010.550.130.040.010.000.010.000.010.010.010.02

0.000.000.000.000.010.010.030.050.000.030.000.000.000.000.000.020.780.010.000.000.010.000.000.000.020.00

0.000.000.000.010.010.060.000.120.010.060.070.000.070.010.000.010.030.420.020.000.010.010.020.010.020.02

0.010.010.010.010.100.000.090.040.000.020.030.000.020.000.010.000.020.000.470.000.010.000.020.050.030.03

0.010.000.000.020.040.100.020.100.010.050.080.020.020.000.000.010.030.100.000.220.040.000.020.020.030.03

0.010.010.000.020.020.030.000.140.010.030.030.000.120.010.000.010.040.030.000.000.370.000.070.010.020.02

0.000.000.000.000.000.000.000.020.000.000.020.000.020.000.010.000.010.020.000.000.000.400.310.060.090.02

0.000.010.000.000.010.000.000.020.000.000.010.000.010.000.010.000.020.010.000.000.020.040.760.050.010.02

0.010.000.000.010.040.000.000.010.010.010.070.000.020.000.000.000.010.000.020.000.010.010.100.590.030.04

0.000.000.000.000.000.000.010.010.000.010.000.000.000.000.000.000.020.000.000.000.010.020.060.000.810.02

0.000.000.000.000.010.000.000.030.000.010.030.000.010.000.000.000.020.010.010.000.000.010.020.020.020.82 0.0
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Figure 2.3: Normalized crowded confusion matrix for subject AXL.
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Figure 2.4: Proportion correct for each letter in the two conditions, averaged over the five
subjects. Error bars are standard deviation across subjects.

Figure 2.5: Proportion correct for each letter in the single condition, for each of the 5
subjects.

diagonal entries indicate correct results, while the off-diagonal entries indicate errors. For
comparison, the crowded confusion matrix for this same subject is provided in Figure 2.3.

The proportion correct (values along the diagonal) for each of the 26 letters is given in
Figure 2.4 in each of the two conditions. Note that trends are relatively consistent across
the 5 subjects, as shown in Figure 2.5 and Figure 2.6. The utility of Figure 2.4 is that it
nicely highlights the relations between proportion correct in the single-letter and crowded
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Figure 2.6: Proportion correct for each letter in the crowded condition, for each of the 5
subjects.

Figure 2.7: Standard deviation of proportion correct across each subject for the two condi-
tions.

condition. First, the variability across subjects is typically higher in the crowded condition,
indicated by the greater extent of the green error bars (higher standard deviation across
subjects). This fact is shown further in Figure 2.7, which plots the standard deviation of the
proportion correct (across subjects). Several letters are in good agreement across subjects
in the single condition, specifically d, g, k, m, p, w, and z. Those are also the letters that
subjects typically performed the best on, meaning that the subjects agreed with one another
when the letters were easily identifiable (except for m). For other letters, there were more
individual differences concerning proportion correct.

Another way to format these data is to show the mean and standard deviation on a single
plot, as in Figure 2.8. Each letter and condition is indicated with a colored character, with a
gray line connecting the two so the relationship between the single and crowded conditions
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Figure 2.8: Standard deviation versus average of correct letter identification.

Figure 2.9: Difference between the single and crowded proportion corrects for each letter
and each subject.

is clear. The general trend is that letters became slightly harder to identify (shift left),
with a concomitant large increase in the variability between subjects (shift up). The letters
with lower overall proportion correct (both single and crowded) differed the most. Several
letters were not significantly different between the two conditions: c, t, i, s, and e. Some
letters became much worse when crowded (u, and m). Lastly, for the two letters t and f,
performance improved (relative to the average performance) when crowded.
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Figure 2.10: Correlation coefficients between the diagonals of each of the 10 (5 subjects,
single and crowded) normalized confusion matrices. The center dividing lines demarcate the
sets of single (left and upper five, ending in “1”) and crowded (right and lower five, ending
in “3”) results.

Figure 2.8 is revealing, but are the general trends consistent within subjects? Figure 2.9
plots the per-letter difference between the proportion corrects in the two conditions for each
subject. Transforming to Z-scores before subtraction did not yield qualitatively different
results. Figure 2.9 confirms the unique status of the letter f. Four of the subjects performed
better on this letter (relative to the mean performance) in the crowded condition. Generally,
subjects identified single letters better, most consistently with a, h, k, l, m, n, o, r, s, u,
v, w, x, and z. For the remaining letters there were significant individual differences. The
challenge now is thus, is there a way to capture the patterns in these individual differences?
Can insight be gained on the specific type of degradation that crowding incurs? Clearly
there is a difference between the errors in the two conditions tested.

To compare the subjects to one another as well as between the two conditions, we com-
puted the correlation coefficient of the diagonal entries (the proportion correct of each letter).
This is presented in Figure 2.10 in the form of an upper-triangular matrix. Generally, the
correlation is higher between the subjects on the same condition, versus comparing across
conditions, although the difference is not large. What if the whole matrix is compared?
Figure 2.11 presents this analysis. The correlations are quite large (0.91-0.97 for the single
condition, and 0.85-0.95 for the crowded condition), and the difference between the two con-
ditions is not well differentiated (0.77-0.94). This result is simply an artifact of the structure
of the confusion matrix. Specifically, the diagonal entries dominate the computation in a
way that is consistent for all confusion matrices. It is more informative to analyze the error
terms separately. Figure 2.12 plots the correlation of all terms except the diagonal for each
of the 10 confusion matrices (5 subjects × 2 conditions). The correlations are much lower,
and seem to exhibit fewer systematic patterns. For example, YTY3 agrees nearly as well
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Figure 2.11: Correlation coefficients between each of the 10 (5 subjects, single and crowded)
normalized confusion matrices. The center dividing lines demarcate the sets of single and
crowded results.

Figure 2.12: Correlation coefficients between the off-diagonal entries (errors) of each of the
10 (5 subjects, single and crowded) normalized confusion matrices. The center dividing lines
demarcate the sets of single and crowded results.
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Figure 2.13: Processing pipeline of analyses performed.

with the uncrowded errors of the other subjects as with the crowded errors, though many
of the other subjects show an identifiable difference between the crowded and uncrowded
conditions.

2.2.6.1 Luce choice model

To isolate possible per-subject response biases in the data, as well as to transform the
asymmetric confusion matrix into a symmetric “similarity” matrix, the Luce choice model
was employed. The confusion matrix for each subject in the two conditions was transformed
using the Luce choice model, using the methods described in Section 2.2.4.7. Furthermore,
the parameters estimated from the model were analyzed as described earlier. The letter
similarities were analyzed with multidimensional scaling (MDS-choice model), and additive
clustering. Figure 2.13 depicts a cartoon of the processing pipeline that will be described
henceforth.

The outcome of each transformation, the vector of biases β and triangular matrix of
similarities η is given in Section A.2. The model fits the data well, which is not surprising
given that the model has so many parameters. Is the model truly capturing “biases” and
“similarities” in a meaningful way? Ideally, the biases for a given subject will be similar
across the two conditions. This would hold if the vector indeed represents purely cognitive
biases that are unrelated to the visual input. The similarities, on the other hand, should
reflect perceptual appearance variations between the two conditions. Furthermore, when
comparing across subjects, the difference based on condition (crowded versus uncrowded)
would ideally have commonalities.

To explore these ideas, the Luce choice β parameters were plotted in two different ways.
Figure 2.14 shows the β parameters for the 5 subjects on a separate plot for each condition.
There does appear to be some consistency amongst subjects for a given condition, but it
is far from perfect. Certain trends are clear. While all subjects have a bias for “k” in
the single condition, this pattern is reduced for the crowded condition, while other letters
see systematic increased magnitude when crowded, such as “j” and, to a lesser extent, “u”
and “w.” Figure 2.15 illustrates the within subject agreement across the two conditions by
plotting the data in a different way. The βs are in good correspondence between conditions
for subjects AXL, RXK and (to a lesser extent) YTY.

The correlation plot of Figure 2.16 enables direct examination of these relationships.
First, the observations in the previous paragraph hold. The correlation between the betas
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Figure 2.14: Luce choice β parameters for each subject, separated by condition. Upper
plot shows the single condition, lower plot shows the crowded condition. The value for “g”
(exceeding limits of lower plot) for subject/condition YTY3 is 0.29

in the crowded and uncrowded conditions are the greatest for subjects AXL, RXK, and
YTY, at 0.74, 0.71, and 0.71, respectively. The other two subjects only achieved correla-
tions of 0.46 and 0.45. Interestingly, these other two subjects (KMA and RXL) correlated
well in the uncrowded condition (0.8), but not in the crowded condition (0.63). Generally
the across-subject, across-condition correlations (upper right of Figure 2.16) were weaker
(<0.65), except for the curiously strong RXK1 versus YTY3 correlation of 0.83.

2.2.6.2 Classical multidimensional scaling

As stated previously, multidimensional scaling is a procedure to reduce the dimensionality
of a matrix of stimulus similarities to some smaller number of dimensions that captures
“distances” between stimuli. We performed classical multidimensional scaling to the simi-
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Figure 2.15: Same data as Figure 2.14. Luce choice β parameters, arranged by subject, to
show difference between conditions.

larity matrices resulting from the Luce choice decomposition of Section 2.2.6.1. With the
classical method of MDS, determining the relative contribution of each of the dimensions of
the decomposition is straightforward from examination of the eigenvalues of the similarity
matrix. A plot of the sorted eigenvalues is known as a “stress plot,” and can be used to de-
termine a “sweet spot” for the appropriate number of dimensions, minimizing variance while
not over-fitting. Figure 2.17 presents the stress plot for all 10 similarity matrices. While
methods vary for interpreting these plots, intuitively 5-10 dimensions would be optimal for
these data—where the curves have a “knee” such that there is diminishing returns for adding
additional dimensions.

Nevertheless, since our goal is illustrative, we will present the letter proximities using only
the first three dimensions. Two or three dimensions are the only possibilities for reasonable
graphical display. Figure 2.18 gives the three dimensional decomposition for all 10 matrices.
Note that the horizontal axis is the first (or strongest) component of the decomposition.
As such, for the uncrowded solution, the first dimension generally captures the letters that
are closest to a single ascender–i.e., tall and straight letters like “l,i,t,f.” The second, next-
significant dimension, tangent to the plane of the page, typically discriminates the small
round letters like “e,c,o,s.” Finally, the third dimension does vary across subject. For subject
RXL, this dimension subsumes both the late-in-the-alphabetic letters “w,x,y,z” while also
concerning ascender letters like “h” and “b.” For all four other subjects, this dimension
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Figure 2.16: Correlation of beta parameters of Luce decomposition for all 10 confusion
matrices.

Figure 2.17: “Stress plot” showing influence of each dimension in classical MDS of Luce
similarities, for all 10 confusion matrices. Solid lines show single-letter condition, dashed
lines show crowded condition for each subject.
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Figure 2.18: Three-dimensional classical MDS of letter similarities for each subject and
condition. Ordered by significance are the X (horizontal), Y (tangent to page), then Z
(vertical) axis. Top two rows indicate single letter condition, while bottom two rows indicate
crowded condition.

almost solely discriminates the later letters from the rest of the laters. A large clump of
letters in the “middle” of the plot indicates the need for additional dimensions in order to
separate these in space.

The results for the crowded condition (lower two rows of Figure 2.18) are quite different.
For this condition, “m” and “n” almost always appear together in an extreme location of the
perceptual space, and are noticeably more proximal to “u” and “h” (letters with an arch)
in the crowded condition. There is generally more spread in the spatial locations, although
the small round letters have a similar proximity and extremal location in both conditions.

2.2.6.3 Additive clustering

As a further attempt to discriminate the pattern of errors in the two conditions (crowded and
uncrowded), we applied the additive clustering method described in Section 2.2.4.9 to the ten
confusion matrices. Since it is unclear how many clusters are optimal, we first determined
the goodness-of-fit (in terms of variance accounted for), of optimal solutions for different
numbers of clusters. Figure 2.19 plots the variance accounted for as a function of number of
clusters, averaged across subjects, for both the single and crowded conditions. As always,
additional clusters will account for more variance, with the risk of overfitting.
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Figure 2.19: Variance accounted for as a function of number of clusters used for additive
clustering.

Figure 2.20: Additive clustering solution for single letter. The top curve shows the calculated
weights on each cluster. Cluster membership is indicated by letter occurrence in each of the
vertical bars, which show the 15 clusters. Clusters are sorted from left to right based on
weights.
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Figure 2.21: Additive clustering solution for crowded letter. See Figure 2.20 for explanation.

Figure 2.20 presents the additive clustering decomposition of one subject in the sin-
gle condition, with 15 clusters (one of which is the “global” cluster comprising all letters.)
Each cluster is indicated by a vertical bar, which are sorted from left to right by decreasing
magnitude (or weight). The magnitude is indicated by the line top plot on the top graph.
Figure 2.21, on the other hand, shows the decomposition of the crowded confusion matrix
for the same subject. There are obvious differences between the two decompositions, which
nicely echo the qualitative observations arising from our exploration of the multidimensional
scaling method in Section 2.2.6.2. Specifically, the most dominant clusters in the single con-
dition comprise straight-ish letters like “f,r,i,l,” while the dominant cluster when crowded (by
far) is “m,n.” The cluster containing “c” and “e” is common to both conditions, and rela-
tively strong. The group containing letters with arches (“m,n,h,u”) has a greater magnitude
in the crowded condition, and “u” does not appear when letters appear alone.

To make these observations concrete, Figure 2.22 plots the top twelve clusters that ap-
pear in the uncrowded or crowded analysis for subjects. To determine which clusters to
include, the total magnitudes of each cluster in the 10 results were summed and thresholded.
The ordering of the clusters vertically is arbitrary, an attempt to group them by common
members. The observations of the previous paragraph from the single subject are validated
in the group data. Clusters containing “c” and “e” are strong in both conditions, but are
more pronounced in the single-letter condition. The cluster comprising “m” and “n,” on
the other hand, are strong primarily in the crowded condition for all subjects. The reason
that few other clusters appear is due to individual differences. Clusters that appear for the
different subject in the crowded condition are significantly variable.
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Figure 2.22: Clusters common to both single and crowded condition. Color indicates the
magnitude of that cluster for a given subject and condition.

2.2.7 Summary

This section summarized some of the key techniques that have been used to analyse error
patterns in letter confusion matrices.

The associated experiment and analysis characterized letter confusion error patterns in
two conditions: peripheral (10◦ in the lower visual field) single letters in significant Gaussian
noise, and peripheral crowded letters (10◦ in the lower visual field), with horizontally-oriented
(i.e., tangential) flanking letters in modest noise. We looked for differences in: confusion
matrices, Luce choice model coefficients, low-dimensional representations of Luce similarity
coefficients, and additive clustering analyses of Luce similarity coefficients. The pipeline of
analyses is shown in schematic form in Figure 2.13.

There were clear qualitative differences between the two conditions. The crowded con-
fusion of “m” and “n” demonstrates a well-known characteristic of crowding: in a crowded
stimulus comprising multiple objects (letters), it is difficult to attribute object parts to
the correct object (letter). The fact that these letters have very different overall shape
envelopes (Bouma [1971]) means that there were few instances of this confusion cluster
in isolated peripheral vision (Figure 2.22). However, when crowded, these errors become
commonplace, since the errors induced by crowding expose a different mechanism. Loss of
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high-frequency detail occurs in crowding as well as uncrowded vision, as evidenced by the
“c” and “e” confusion that occurs in both the crowded and uncrowded condition.



CHAPTER 2. LETTER RECOGNITION 33

2.3 Letter recognition: modeling the process

2.3.1 Introduction and background

Modeling how letter recognition is impaired in the crowded periphery is a central interest
of our lab. Age-related macular degeneration (AMD) is a primary concern, and patients
with AMD report difficulty reading as a fundamental complaint. Since these patients rely
on their periphery for all visual functions, understanding peripheral impairments could help
inform assistive technologies, such as selective enhancement of contours in images for more
efficient processing (Kwon et al. [2012]), or font design for resisting the deleterious effects of
crowding (Bernard, Aguilar, and Castet [2014]).

A precursor to understanding faulty letter recognition in crowding is an understanding of
“normal” letter recognition. Presumably, this would be associated with optimal conditions
of foveal viewing, where acuity is best and crowding is not a limiting factor. Unfortunately,
there has been no single satisfactory model that explains the letter recognition process. In
this chapter I review the menagerie of proposals, focusing on those that I believe to be the
most promising.

2.3.1.1 Template matching

A “null model” for letter recognition is the use of static letter image templates that are
directly compared to the input image, pixel-by-pixel. In fact, this is how “ideal observer”
models of letter recognition function (Parish and Sperling [1991]). The simplest form of this
idea is easy to criticize, since the procedure is too sensitive to image manipulations that
humans ignore—our vision is remarkably invariant to many types of stimulus manipula-
tions and distortions, like rotation, warping, and more (Neisser [1967]). Furthermore, image
templates are able to utilize information from all relevant pixels in a way very different
from human recognition. Humans are poor at absolute spatial localization. We excel in-
stead on relative computations, signaled by differences between nearby units. The point has
been made by Westheimer, and constitutes the basis for our ability to perform hyperacuity
tasks (Westheimer [1979b]). On the other hand, there are extensions of template matching
that extend its applicability and plausibility, of course. Deformable templates represent the
most straightforward extension (Jain, Zhong, and Lakshmanan [1996]; Amit, Grenander,
and Piccioni [1991]). In this extension, smooth transformations are allowed on the templates
when matching an image, allowing a greater range of stimulus invariances.

Even in its basic form and with its known limitations, template matching has strong
proponents (Watson and Ahumada [2012]; Watson and Fitzhugh [1989]; Gervais, Harvey,
and Roberts [1984]; Loomis [1990]). The debate of template models versus “feature” models
(described later) is concisely summarized in a recent manuscript by Watson and Ahumada
([2012]). These authors remind the reader that the specific putative features necessary for a
feature-based model remain elusive, and hence the statistical success of template matching
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schemes (such as theirs) precludes rejection as a viable model of the letter identification
process.

2.3.1.2 Fourier decomposition

Spatial frequency-based Fourier decomposition of letters has been proposed. The most ex-
treme form of a Fourier-based letter recognition approach proposes that the visual system
computes a two-dimensional Fourier transform of the input image, and compares the resul-
tant power spectrum to the spectra of stored letter templates. This operation would be one
way to achieve positional invariance, and follows from the theoretical ideas put forth by De-
Valois and DeValois ([1988]). Providing evidence against a pure Fourier approach was Coffin
([1978]), who found that the similarities between frequency spectra of letter templates did not
correlate with human errors. Gervais, Harvey, and Roberts ([1984]), however, later showed
evidence for the Fourier approach and pointed out several possible oversights of Coffin. Ger-
vais and collaborators believed that Coffin’s used of raw correlation values was inappropriate,
preferring a Euclidean distance metric instead. Furthermore, Coffin compared results across
different fonts and letter sizes, which would affect the results considerably.

The truth of visual processing is likely closer to a compromise between frequency-based
approaches and the localized edge filters of Hubel and Weisel. One solution is the usage
of Gabor filters, which sample information limited in both space and frequency. These fil-
ters have been successful in modeling the responses of cortical simple cells (Marčelja [1980];
Daugman [1985]), and yield efficient codes for images (Daugman [1985]; Daugman [1988];
Olshausen and Field [1996]). Olshausen and Field ([1996]) showed that the filters could
emerge naturally from the process of learning a sparse code for natural scenes. Most neu-
rally inspired models of the visual system, such as Neocognitron (Fukushima [1980]) and
HMAX (Riesenhuber and Poggio [1999]) include Gabor-like detectors as a first stage of
processing.

2.3.1.2.1 Spatial frequency channels A related concept is that of analysis based on
spatial frequency channels. A groundbreaking result in the psychophysical study of letters
was the determination that observers seem to use specific spatial frequency bands for recog-
nition (Parish and Sperling [1991]; Solomon and Pelli [1994]; Chung, Legge, and Tjan [2002];
Majaj et al. [2002]; Gold, Bennett, and Sekuler [1999]). Evidence for this comes from either
spatial frequency filtering of the letter stimuli (Parish and Sperling [1991]; Chung, Legge,
and Tjan [2002]; Gold, Bennett, and Sekuler [1999]), or noise masking experiments (Solomon
and Pelli [1994]; Majaj et al. [2002]) using filtered noise added to the letters. The threshold
elevation revealed by the sundry experiments all show that the filters used to identify let-
ters have a band-pass shape, centered somewhere between 1-3 cycles per letter. Importantly,
when the same procedure was applied to a “white-noise ideal classifier” by Solomon and Pelli
([1994]), a low-pass shape emerged. In the context of letter recognition, the ideal classifier
is defined as a pixel-based template matcher (Parish and Sperling [1991]).
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2.3.1.3 Feature-based models

It is natural to hypothesize that letters are made up of simple “features” that are inde-
pendently detected early in the visual system, then combined (pooled) in some fashion.
The most notable theoretical proposal is the early “Pandemonium” model of Selfridge and
Neisser (Selfridge [1958]; Selfridge and Neisser [1960]). Their model comprised a stage with
“demons” that looked for simple features like edges of a certain orientation. After this stage,
a different set of decision demons combined together the responses of the earlier stage to
determine which letter was most likely. Their motivation in developing this model was to
overcome the problems with the simplest forms of template matching. They recognized that
using a hierarchical system such as theirs would enhance recognition by allowing: (1) more
invariance in the relative locations of the individual parts, (2) resistance to global defor-
mations, and (3) the recognition of a greater variety of letter shapes (such as optotypes in
different fonts).

Eleanor Gibson added careful empirical support (Gibson et al. [1962]), originating from
her study of development. She showed how children generalize letter shapes in a way that
illuminates the specific components used for recognition. Based on these results, she proposed
a set of likely features used to recognize capital letters, which she enumerated in her classic
book on perceptual learning (Gibson et al. [1962]). Since then, several researchers have
presented abstract feature lists like hers, usually validated using some form of confusion
matrix comparison (Geyer and Dewald [1973]; Briggs and Hocevar [1975]; Keren and Baggen
[1981]).

The basic idea of a hierarchical model has been bolstered by findings from the mammalian
visual system such as Hubel and Wiesel’s groundbreaking work in cat and monkey visual
cortex (Hubel and Wiesel [1962]; Hubel and Wiesel [1974]). They found that in the primary
visual cortex (V1 in primate), neurons that retinotopically tile the visual field seem most
sensitive to basic visual forms like edges or bars. A further class of neurons, complex cells,
introduce invariance by pooling spatially proximal simple cells with compatible properties.
This basic idea of sampling and pooling seems to be repeated further along in the visual
system, with the “preferred” features for neurons becoming progressively more complicated.

However, questions have become more subtle as researchers have empirically tested ideas.
Firstly, can a single set of features be conclusively identified? Fiset et al. ([2008]) sought to
identify features of uppercase and lowercase letters using the “Bubbles” method (Gosselin
and Schyns [2001]). With this method, stimulus details are limited by selectively applying
Gaussian apertures to the image. By looking at which apertures lead to which responses,
the information used by observers is revealed, much like classification images (Eckstein and
Ahumada [2002]). Fiset et al. ([2008]) found that terminations were by far the most diagnostic
feature that subjects used to identify letters. Similar results were obtained by Lanthier et
al. ([2009]) using a different technique. They manually deleted pixels from capital letter
images and found that vertices were the most important cue, as proposed for general object
recognition by Biederman ([1987]). In the context of letters, these vertices are typically
located at the terminations, validating the findings of Fiset et al. ([2008]).
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2.3.1.3.1 Featural independence A detail concerning the sufficiency of feature mod-
els is whether constituent features are processed independently and uniformly. This is an
important issue, since it is a requirement for almost all feature-based models, starting with
Pandemonium (Selfridge [1958]), and continuing to (for example) recent models of feature
combination in crowding (Greenwood, Bex, and Dakin [2009]). This hypothesis has been
tested directly for simple forms made up of line segment features. Featural independence
has been shown by some researchers (Wandmacher [1976]; Townsend, Hu, and Ashby [1980];
Townsend, Hu, and Ashby [1981]), but has been challenged by more recent experiments from
Townsend and colleagues (Townsend, Hu, and Evans [1984]), who showed interdependencies
between feature detection in even simple figures. They also showed that features were not
detected uniformly, and in a later study (Townsend, Hu, and Kadlec [1988]) determined that
a “payoff” (reward) on individual features biased their detection. Townsend has been by far
the most vigorous researcher in studying models of feature-based letter processing.

2.3.1.3.2 Time course dynamics There have been proposals about the temporal dy-
namics of perceptual processing. The prominent theme is that processing starts from the
coarse aspects of visual input, moving to progressively finer details, a theory reviewed by
Hegdé ([2008]). A model for the dynamics in terms of letter-like shapes was proposed and
tested by Lupker ([1979]). A more quantitative validation was developed by Townsend, Hu,
and Kadlec ([1988]) with a feature-based alphabet comprising figures made from straight
and diagonal line segments.

2.3.1.3.3 Global/Gestalt features An enhancement to feature-based models is the
use of global or holistic, rather than parts-based attributes. The Gestalt school of thought
proposed that parts-based theories cannot explain all visual phenomena—some phenom-
ena, such as phi motion, demonstrate that perception of “wholes” can have primacy over
the constituent parts (Wagemans et al. [2012]). A modern proponent of this idea is James
Pomerantz, who has shown that emergent features of objects, such as closure or other figu-
ral relations, pop-out in ways that challenge feature-based models (Pomerantz, Sager, and
Stoever [1977]; Pomerantz and Pristach [1989]). Less radically, some researchers simply add
global features to the lists of features used by abstract models. Many of the proposed al-
phabetic feature lists, including those of Gibson et al. ([1962]); Geyer and Dewald ([1973]);
Keren and Baggen ([1981]) include Gestalt properties such as symmetry, closure, or paral-
lelism in their list of distinctive features used in letter recognition. However, it is unclear
how these emergent properties could arise from a functional model operating on the pixels
of an image, so concrete implementations leveraging Gestalt features are lacking.

2.3.1.3.4 Interactive Activation The interactive activation model of McClelland and
Rumelhart ([1981]) was one of the first operative models of recognition using letters built up
from well-defined constituent features. Their features were line segments making up LCD
display-like artificial letters from Rumelhart and Siple ([1974]). Unique to their model is the
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attempt to account for context effects such as the word superiority effect (Reicher [1969]),
where knowledge of possible words are known to bias detection of constituent letters. To
enable this effect, top-down connections between words units (endowed with a dictionary)
modulated the feature detectors units. A limitation of this system is that its alphabet and
well-defined feature set have not been extended to lower-case letters.

2.3.2 Convolutional neural network model of letter recognition

Feature-based models are the most interesting class of models to us, since they: (1) have
some physiological support, (2) can be extended naturally to model (for example) crowding,
(3) have intuitive appeal from theory and developmental studies, and (4) can be extended
to general-purpose object recognition. Issue (2) arises since many models of crowding as-
sume that features are independently detected, then wrongly attributed between target and
flankers (Levi [2008]; Nandy and Tjan [2007]; Pelli, Palomares, and Majaj [2004]).

There is a class of networks known as “convolutional neural networks” that have become
very popular in the computer vision community (LeCun et al. [1998]). They descend from the
biologically-inspired Neocognitron (Fukushima [1980]), satisfy the criteria from the previous
paragraph, and provide several further advantages. First, these networks have already seen
successful use in letter and number recognition, so their practicality has led to a number
of efficient implementations. Second, they typically comprise multiple layers of processing
whose preferred “features” can either be hand-tuned, or can emerge through optimal learning.
This conveniently addresses the debate about arbitrary determination of features.

Although these networks are inspired by the mammalian visual system, comparison of
their results versus human performance has been (so far) absent. Most researchers are
solely interested in achieving maximum performance on a benchmark object recognition
dataset. Our goal, on the other hand, was to take an implementation of a convolutional
neural network and subject it to a series of “virtual psychophysics” experiments. We were
interested in whether the errors the network makes resemble the errors made by humans. To
quantify the correspondence, we used the statistical tools of confusion matrix comparison
developed in Section 2.2.

Most generally, the name “convolutional neural networks” refers to a class of neural net-
works that are a subset of traditional neural networks in several key ways that are inspired by
biological plausibility. First, the simple cell/complex cell dichotomy observed by Hubel and
Wiesel ([1962]) is formalized in discrete layers of the network, and connections are restricted
to be spatially proximal, rather than the all-to-all connectivity of traditional neural networks.
Typically, multiple layers of simple and complex cell arrays are stacked, a caricature of the
observed hierarchical structures of visual cortex (Felleman and Van Essen [1991]).

Figure 2.23 is a cartoon depiction of a convolution network. The pixels of a target
image are used directly as input. The first layer contains nodes akin to simple cells, typically
exhibiting edge-like preferences. An array of these nodes tiles the space (matching retinotopic
organization) in grid-like fashion, and convolve the input image at each location with their
small receptive fields. The output of the array of cells with a given feature is thus a 2D
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Figure 2.23: Schematic diagram depicting convolutional network architecture. See text for
details.

representation of how well the image matches its preference at each location. For example,
one set of detectors would represent the amount of “horizontal” energy across the image.

Groups of simple cell outputs that are spatially proximal (and potentially proximal in
feature space, i.e., similar orientations) are then pooled together by the next layer, repre-
senting the complex cell operation. A single output is determined for the aggregate using
an arbitrary operation such as a maximum or average. This step both introduces spatial
invariance and incorporates the non-linear operation necessary for interesting behavior.

The number of cells and spatial density in each layer is arbitrary. It could be hand-tuned
to the particular input, for example, or matched to physiology. An arbitrary number of these
convolution+pooling layers are stacked, with the number of cells in each area decreasing. A
side-effect of this structure is that the spatial extent of neurons in each successive layer will
increase in terms of the “retinal” input space. This matches observations from neurophysi-
ology (Freeman and Simoncelli [2011]) of the change in receptive field sizes from V1, V2, to
V4.

Lastly, a decision stage must determine the output of the whole network for a given
pattern. For this network an additional layer of “hidden nodes” connects the output of
the last convolution later to each possible output, 26 letters in our case. The network is
trained using substantial labeled training data, with connection weights in the entire network
modified to optimize performance in the task of letter recognition. The hidden nodes are
typically not justified or analyzed–rather they represent an opaque mechanism whereby the
convolution layers outputs are optimally utilized, diverging somewhat from biology.
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2.3.2.1 Biological IMplausibilities

Before proceeding, I believe it is important to acknowledge the ways in which these models
differ from known details of biological visual processing, and will briefly list a few of these.

2.3.2.1.1 Feedforward architecture. It is well known that a huge number of connec-
tions in the brain are feedback or lateral connections. For example, retinal input constitutes
only 10% of the connections to the LGN (lateral geniculate nucleus), which is typically de-
scribed as simply a “buffer” before visual cortex. The remaining 90% are back-projections
from the cortex and other areas, with unknown function (Guillery and Sherman [2002]).
Adding feedback or lateral connections greatly complicates the operation of networks, due
to the introduction of temporal dynamics. The strict hierarchical nature of cortex is also
becoming increasingly challenged as a sufficient description of cortical architecture (Hegde
and Felleman [2007]).

2.3.2.1.2 Temporal dynamics. Temporal dynamics is ignored in typical convolutional
neural networks. That is, all computations are performed at once, in a deterministic way.
Many realistic models of neural dynamics involve different time courses of inhibition and
excitation, which could contribute to center/surround interactions, and/or coarse-to-fine
processing. The original Neocognitron (Fukushima [1980]) was a “relaxation” network, in-
volving complex dynamical interactions that eventually settled into a stable state. The
most famous relaxation network is the Hopfield Network (Hopfield [1982]). The Interactive
Activation model of McClelland and Rumelhart ([1981]) is a particularly relevant example.
Finally, the family of “ART” models developed by Grossberg (Grossberg [1987]) represent
a unique class of models that balance top-down and bottom-up influences. The success of
application-specific neural networks from the computer vision community is partly due to
the greater controllability of static networks.

2.3.2.1.3 Neural details. Although the stereotype simple/complex cell dichotomy is
maintained, there is greater heterogeneity of cells in actual brains, including the following
details that are typically overlooked in neural networks, including convolutional ones. It is
unclear if any of these effects will turn out to be crucial for a full understanding of neural
processing.

• Inhibitory versus excitatory signals

• Laminar architecture

• Spike-timing dependent plasticity

• Information in spikes versus simple rate coding

• Receptive field sizes grow with eccentricity. Heterogeneity would complicate the model,
and hinder parallel-processing implementations.
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Figure 2.24: Lower-case letter “a” in the 21 Deja family fonts used.

• Significant redundancy/overlap in cortical columns. There have been some interesting
recent proposals that introduce overlap into convolutional neural networks (Ngiam et
al. [2010]; Hyvärinen and Hoyer [2001]; Kavukcuoglu et al. [2009]). Intriguingly, results
have shown the development of topographic organization resembling the pinwheels
of V1. Further, as overlap is increased, models begin to resemble population code
methods (Averbeck, Latham, and Pouget [2006]).

2.3.3 Methods

Despite a few divergences from known neuroscience, the convolutional neural network still
has the advantages that it matches the gross architecture and function of the visual system
reasonably well, and has been very successful in identifying letters and numbers, even hand-
written ones. I will now describe our experiments comparing the neural network against
human results. This involved testing the network with a variety of stimuli, and evaluating
its “behavior.” That is, we analyzed the results of its operation, especially identification
errors. There were two types of analyses performed. We evaluated the critical frequency
band used for identification by adding filtered noise to the network’s test input. We also
compared the confusion matrices of the convolutional neural network with several human
confusion matrices.

2.3.3.1 Synthetic stimuli

To verify that the network recognized single letters in a translation-invariant way, we in-
troduced stimulus variations that would confound typical schemes such as pixel templates.
Stimulus variations during training also make the network more robust to letters it hasn’t
seen. Our generated stimuli had multiple degrees of variations. First, the font was ran-
domly chosen from members of the set of “DejaVu” fonts, high-quality free fonts available
on Linux systems. Members of this set include monospace, serif, sans-serif, and bold, italics,
and bold-italics versions of each character, shown in Figure 2.24. For these experiments,
we restricted font choice to either serif or monospace versions of the letter in training and
testing, allowing bold, italics, and bold-italics variations of each. The size of each letter
was random, between 17 and 26 pixels. Each letter was randomly located in the image array
(with care taken to avoid cutting off any parts of a letter). Each letter was rotated a random
angle between -25 and +25 degrees. Lastly, random noise of restricted spatial frequency
content was added to the image. Pseudo-code of the stimulus generation process is provided
below. Example of stereotypical letter images are presented in Figure 2.25.
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For training, a large set of letter images (72,000 stimuli) was generated and presented
to the network. The network connections were then “frozen” and testing commenced, using
multiple small test sets (2,600 stimuli each), generated with per-condition parameters. Most
training parameters were the same for all experiments, with the variations described above.
For the critical band experiments, two sets of additional experimental parameters were ma-
nipulated for the testing phase, the noise characteristics and target versus background pixel
intensities: see Section 2.3.4 for details.

Given: Number of stimuli, set of fonts, letter size range, noise standard deviation,
noise spatial filter type and frequency, letter contrast (versus noise).

Generate ideal filter in the Fourier domain. A 28×28 image is created, with zeros
at all radii for frequencies that are stopped, and ones for all frequencies that are
passed. Bandpass filters were one octave wide.

For each stimulus:

1. Render random character (“a”-“z”) in random font at random (x,y) location
in 28×28-pixel square bitmap, ensuring that no pixels of the letter are cut off.

2. Rotate letter image to a random angle within range specified.

3. Generate a noise image mask as specified by experiment, filtered in frequency
domain. Create an array of 28×28 normally-distributed numbers. Multiple
the FFT of the noise by the noise filter created previously, then perform inverse
FFT to yield spatial noise image.

4. Scale letter image to desired numerical intensity (using contrast amount spec-
ified for that experiment) and add noise image.

2.3.3.2 Network implementation

To implement the convolutional neural network, I used Python, with Numpy and Scipy
mathematical extensions (Oliphant [2007]), PIL (Python Imaging Library), and the Theano
library (Bastien et al. [2012]; Bergstra et al. [2010]). Theano provides a pedagogical con-
volutional network example known as “LeNet,” which I used as a starting point. Theano,
developed at the University of Toronto, offers several very attractive advantages over com-
peting frameworks. First, the core system has been built with high performance in mind.
Network models run automatically on a GPU without any modification. Since operations on
an array of nodes (such as the neurons in a layer) are homogeneous, this particular application
is ideal for GPU-based execution. Implementation of neural networks using Theano merely
involves specifying the network architecture, connection patterns, and learning rules. Thus,
execution of the network model is handled internally by a highly optimized mathematical
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Figure 2.25: Example stimuli generated for training and testing convolutional network
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Figure 2.26: Schematic showing implementations details of convolutional neural network.

kernel.
Specifics of the system architecture details are given in Figure 2.26. The network consists

of two stacked “simple+complex” layers. Each of these first contains 5×5 filters that convolve
over spatial locations on their input. There are 20 filter types in the first layer and 50
filter types in the second layer. The output of each of these convolution layers are then
downsampled, with a “max” taken on each 2×2 cell neighborhood. The resultant feature
map images are thus quartered. The output of the second convolution layer is then sent to
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Figure 2.27: Lower-case characters in Courier font used by Bouma ([1971]).

a fully-connected 500 node hidden layer, a traditional Perceptron-like neural network layer
with a tanh nonlinearity. Finally, these 500 nodes are connected to 26 letter outputs, in
effect performing logistic regression to yield a letter identity.

During the training procedure, labeled letters images are shown to the network. Param-
eters are updated using stochastic gradient descent with a batch size of 500. That is, 500
letter images (and their identities) are given to the network at once, and all parameters are
updated simultaneously. This includes filter weights for the convolutional layers, feature
biases for the pooling layers, input weights for the hidden layer, and weights from the hidden
layer to the 26 outputs.

2.3.3.3 Validation with empirical confusion matrices

To test whether errors made by the convolutional neural network were similar to the errors
made by human observers, we compared model confusion matrices against human data,
using the methods of Section 2.2. We used classic confusion matrices from the literature and
experiments from our laboratory. Specifically, we used the two confusion matrices published
in Bouma ([1971]), obtained by averaging the confusion matrices of ten subjects in two
different conditions, involving lower-case letters in a Courier font, shown in Figure 2.27.
One condition involved foveal viewing of small letters. The height of a lower-case “x” was
2 minutes of arc, and the stimulus presentation duration was three seconds. In the other
condition letters appearing to either the left or right of fixation randomly, with an x-height
of 13.5 minutes and a duration of 200 msec.

The human empirical data we utilized came from the experiment already described in
Section 2.2.5. Briefly, five subjects viewed either single or crowded letters in the Times font
located at ten degrees in the lower visual field. When crowded, flankers appeared to the left
and right of the target at 1.2× the x-height of the letter. The stimulus duration was 150 ms,
and errors were induced by adding Gaussian pixel noise to the letters. Different amounts of
noise were added to each subject to keep percent correct relatively consistent between 50%
and 60%, as shown in Table 2.1. To anticipate the Results section, analysis was performed
both within and across experimental conditions. Since five observers participated in our
experiments, their individual data can be compared/contrasted to each other within a given
experiment. The two confusion matrices from Bouma ([1971]) are evaluated in the same
way.
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Figure 2.28: Bandpass “critical band” revealed using noise masking. Each curve indicates a
different type of noise masking, low-pass (LP), high-pass (HP), or 1-octave band-pass (BP),
as indicated by figure legend. For the low-pass and high-pass noise, threshold target contrast
for identification is plotted (see text for details). For the band-pass noise (green curve),
average percent correct was evaluated in ten separate runs—error bars indicate standard
deviation across runs.

2.3.4 Results: critical spatial frequency channel

As discussed in Section 2.3.1.2.1, the use of tuned spatial channels for letter identification
by human observers has broad empirical and theoretical support. The shape of the spatial
tuning filter for the convolutional neural network was thus of prime interest to us. For the
network to exhibit human-like performance, it should be subject to similar limitations as
human observers, and one of these limitations is the band-pass spatial filter that has been
identified.

To determine the critical band of the network, we used spatially filtered noise in two ways.
First, following Solomon and Pelli ([1994]), we added either low-pass or high-pass filtered
noise as a mask. White noise (unique to each trial) was filtered in the frequency domain
using an ideal filter centered at one of 11 logarithmically spaced cutoff frequencies, using the
methods described in Section 2.3.3.1. Each simulation run tested a given pixel intensity level
(versus the background noise). There were 9 levels logarithmically spaced in arbitrary pixel
intensity units. A cumulative Gaussian was fit to the average percent correct results, and a
threshold pixel intensity (or threshold “contrast”) was identified for each spatial frequency
band. The results are shown as the blue curves in Figure 2.28.

Alternatively, in separate simulations we added bandpass filtered noise (1 octave wide)
at one of 18 different spatial frequencies, and recorded the percent correct outcome across
the test set. This result is shown in Figure 2.28 as the green curve. Results from both
techniques revealed a similar critical filter, approximately 1-2 octaves wide, with center
frequency between 1.5 and 3 cycles per letter, nearly identical to the previous results from
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Identifier Font Individual Notes
UCB1 Times 5 subjects single letter in noise, 10◦ lower visual field
UCB3 Times 5 subjects crowded letters in noise, 10◦ lower visual field
Bouma Courier 2 matrices foveal, and 7◦ left or right VF, 10 subjects averaged
ModelC Courier n/a n/a
ModelT Times n/a n/a

Table 2.2: Summary of five result-sets used for confusion matrix comparison

human psychophysics.

2.3.5 Results: confusion matrix comparison

The results described in Section 2.3.4 showed that the network broadly uses the same infor-
mation in the stimulus as human observers, and has similar limitations in terms of spatial
frequency. However, can a more detailed comparison be made? The strongest comparison
is to look at the specific errors made by the network, and compare to the errors made by
human observers. This section presents a comparison of the confusion matrices of the con-
volutional network to several results from human experiments. The fonts used in each of
the experiments is of particular interest. Specifically, we compared five sets of confusion
matrices for lowercase letters. They are listed in Table 2.2.

The first two confusion matrix sets were from new experiments from our lab described
in Section 2.3.3.3. The next set of matrices came from Bouma ([1971]). Since these three
result-sets included multiple individual instances (our five different subjects for each of the
two conditions) or separate conditions (Bouma’s two conditions), these matrices were also
compared within-experiment. We evaluated two variants of the convolutional network model.
One version of the network, denoted “ModelT”, was trained and tested with a Times serif
font, and the other one, “ModelC” was trained and tested with a monospace Courier-like font.
The convolutional neural network confusion matrices were not compared within-experiment.

Figure 2.29 shows how the diagonals of the five confusion matrices (correct responses)
correlate both within and between the five experiments. These values are the standard
correlation coefficients of the 26-entry vector indicating proportion correct for each letter.
The purple entries on this figure show the within-experiment correlation. The remaining
entries denote correlations of average results across experiments. The size of each number is
based on the magnitude of the value, for visualization. First, note that the correlations of
the subjects within experiments was quite high: approximately 0.8. Between experiments,
only the two Berkeley experiments had a large (0.67) correlation. Fittingly, the two Berkeley
experiments (using Times font) correlated better with the Times model (0.38, 0.43) than the
Courier model (0.09, 0.19), while the Bouma experiment (Courier font) correlated better
with the Courier model (0.32) than the Times model (-0.25).
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Figure 2.29: Correlation of diagonal entries (correct responses) of confusion matrices. En-
tries in purple indicate within- experiment correlations, while black entries shows average
correlation between experiments. The size of each number is scaled according to its magni-
tude.

Figure 2.30 repeats this procedure for the off-diagonal entries of the five confusion ma-
trices, which comprise the error cells. Again the within-experiment correlations were large
(0.66-0.74), but the between-experiment correlations did not segregate by font quite as well
as in Figure 2.29. Errors from the two Berkeley experiments correlated only slightly better
with the Times model (0.36, 0.36) than the Courier model (0.28,0.35). The Bouma errors
correlated much better with the Courier model (0.51) than the Times model (0.29).

Next we applied the Luce biased choice model (Section 2.2.4.7) to the five matrices, and
examined the correlation of the fit parameters. First, the correlation of the bias parameters is
shown in Figure 2.31. Interestingly, the within-experiments correlations are still relatively
large (0.32, 0.57, 0.64), but smaller than the within-experiment correlations for the raw
matrix entries. The only other large correlation of bias parameters was between the two
Berkeley experiments. The rest of the correlations were small (<0.16). The strong anti-
correlation between the Bouma results and the Times model (-0.46) is curious. The non-
correlation is satisfying, if the parameters truly reflect subject response biases rather than
perceptual attributes.

Finally, we correlated the similarity parameters, presented in Figure 2.32, which ideally
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Figure 2.30: Like Figure 2.29, but for off-diagonal entries of confusion matrices only.

will be purely based on the stimuli, without bias. The highest within-experiment correla-
tions so far are observed: 0.79-0.85. The Berkeley experiment with single letters correlates
better with the Times model (0.61) than the Courier model (0.4). The crowded Berkeley
experiment, however, correlates approximately equivalently with both models (0.62, 0.58).
The Bouma results correlate much better with the Courier model (0.61) than the Times
model (0.38). These results will be discussed further in the next section.

2.3.6 Discussion

The good match of the spatial frequency channels to human data was a success. Like Solomon
and Pelli ([1994]), we created a visualization of noise band and contrast, similar to the
demonstrations that show contrast sensitivity using contrast-modulated grating of different
spatial frequencies. Figure 2.33 plots example letters in low-pass noise stimuli, with spatial
frequency represented by the columns. The target letter contrast decreases from bottom to
top. The overlaid color contour lines show model performance (proportion correct), smoothed
to fit the two-dimensional profile. The message of the demo is intuitive—stimuli which we
find harder to discriminate challenge the network as well.

An important outstanding issue is the source of the band-pass effect in the convolutional
network. Further experiments are needed to identify if the critical band reflects information
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Figure 2.31: Correlation between and across experiments of Luce choice fit bias (β) param-
eters.

in the stimulus, the V1-like receptive fields of the network, or if it has some other origin. To
address the first possibility, Solomon and Pelli ([1994]) stated that the low-pass nature of
the ideal classifier proved that the critical band reflected limitations inherent in the visual
system. Later however, Chung, Legge, and Tjan ([2002]) showed that the ideal-observer
for letter recognition actually has a band-pass shape, called the letter sensitivity function,
or ideal LSF. The shape of the LSF determines which frequencies are most informative for
making discriminations concerning letter identity. The origin of its shape may be related to
the frequency content in the letter stimuli themselves. To test this, Põder ([2003]) analyzed
the spatial frequency content of letter images, and indeed found band-pass energy, instead
of broad-band or 1/f characteristics. Fuller understanding of the spatial frequency channels
of the convolutional neural network could be obtained by testing a greater range of letter
sizes, with respect to the overall image size and first layer filter sizes.

Although the convolutional neural network we used was a biologically plausible model of
visual cortex, no effort was made to model other aspects of the visual pathway, such as the
contrast threshold to identify gratings, quantified as the human contrast sensitivity function
(CSF) (Campbell and Robson [1968]). A full model of the letter identification process should
incorporate additional stages of processing (Beckmann and Legge [2002]), and it has been
proposed that the CSF (plus the LSF described in the previous paragraph) could best account
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Figure 2.32: Correlation between and across experiments of Luce choice fit similarity (η)
parameters.

for the exact band-pass shape of the critical band (Chung, Legge, and Tjan [2002]). It is
unclear what effect incorporating the CSF would have on a convolutional network.

Several observations can be made about the confusion matrix comparison results. First,
the correlations of the parameters within an experiment (between subjects or conditions)
were smaller for the bias parameters than both of the raw matrix correlations. This, along
with the small between-experiment bias parameters, suggest that the biases could be less
dependent on the stimuli, and indeed reflect internal response biases, a stated goal of the
Luce choice model. Interestingly, the convolutional neural network exhibited “bias.” Besides
studying the confusion matrices, an examination of the connections, especially in the final
decision layer, could reveal that certain letters have stronger activations when the stimuli are
highly ambiguous. Presumably more complicated letter shapes require more hidden units
than simple letters, which may over-represent responses for certain letters.

The similarity parameters showed a good correspondence between experimental font
(from the human experiments) with the appropriate computational model. Correlation of the
confusion matrix diagonal entries was reasonably effective in discriminating based on font,
but this method ignores the error entries in the matrices. Correlation of the off-diagonal
entries, on the other hand, failed to discriminate the Times results. Thus, by explicitly
modeling the bias using the Luce choice model (which resulted in little correlation between
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Figure 2.33: Demonstration showing stimuli with model results overlaid as colored lines.
Rows represent different contrast for the letter target, and columns indicate a different
background noise. Colored contour lines indicate model proportion correct.

experiments), the remaining similarity parameters captured the resulting font differences.
The only exception was the crowded Times experiment, which correlated just as well with
the Courier model. However, we already know from Section 2.2 that crowded confusions dif-
fer from non-crowded confusions, so it is not surprising that this result indicated a pattern
beyond mere font dependence.

2.3.7 Summary

This section discussed a variety of models that have been proposed for letter recognition, and
presented a functional convolutional neural network implementation we tested extensively
with a variety of fonts and letter distortions. As expected from the literature, the network’s
performance was impressive, especially given the stimulus degradations. The identification
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of a critical frequency band similar to that observed in humans, as well as the good corre-
spondence of the Luce choice model similarity parameters with corresponding psychophysical
experiments, suggest that this model could be a useful tool for understanding human letter
identification.
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Chapter 3

Crowding

3.1 Introduction

Crowding is an enigma wrapped in a paradox and shrouded in a conundrum. (Levi [2008])

The first report of the effect known as “crowding” was almost 100 years ago. In 1923 Korte
([1923]) described the difficulties identifying letters and short German words in the periphery,
noting several curious phenomena concerning what his subjects reported. He categorized
several stereotypical effects, such as the following: “. . . a feature of a letter or a whole letter
is added to another letter, or a detail becomes so dominant that it absorbs everything else.”
(Korte [1923]), as translated by Strasburger, Rentschler, and Jüttner ([2011]). Although
his description was highly qualitative, attempts to isolate the specific characteristics of the
deleterious effects of flankers on identification of a target letter remain a vital concern of
researchers in this area.

There are practical interests in crowding, such as helping patients with macular degen-
eration. These patients rely solely on their periphery for visual function, and thus may
theoretically be limited by crowding, although recent work has called into question whether
crowding is the primary limiting factor (Chung [2014]). Deficits in amblyopia have also been
likened to those in the crowded periphery (Levi, Song, and Pelli [2007]). On the other hand,
crowding may also have deep theoretical implications. It potentially reflects aspects of cor-
tical organization and hierarchical information flow (Chaney, Fischer, and Whitney [2014]),
perhaps providing insights about how our visual system makes sense of the “blooming,
buzzing confusion” that our eyes are continually bombarded with.

Since our interest is especially crowding with letters, in the first section of this chapter
I present experiments designed to illuminate the nature of feature interactions in crowding.
The difficulties in isolating the features of letters was discussed previously in Section 2.3.1.3,
so we designed custom stimuli in an attempt to characterize how well-defined features might
be improperly combined in crowded characters. To fully understand crowding, it is necessary
to explore the effect of various stimulus conditions, such as the contrast of the target and
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flanker. In the second section, I present an experiment characterizing acuity of crowded
Tumbling-E optotypes as a function of eccentricity, contrast, and flanker spacing. Finally,
I present a related experiment in the third section. Instead of simply manipulating the
contrast of a crowded stimulus, we generated the conditions for isolation of a specific visual
channel, the “konio” pathway which originates from S-cone signals in the retina. Due to
the segregation of this pathway’s signals in the brain, this was an attempt to advance our
understanding of the possible physiological locus of crowding, which remains elusive.

3.1.1 Crowding proposals

The literature on crowding is vast and diverse, and there are now a plethora of good overviews
and reviews (Levi [2008]; Pelli and Tillman [2008]; Whitney and Levi [2011]), so I will restrict
this short introduction to the areas that I find most relevant. My primary interest is how,
specifically, crowding affects visual perception, and the neural mechanisms involved. Mod-
eling interactions and making predictions are the most convincing proof that the behavior
is sufficiently understood. I share the concern of Tyler and Likova ([2007]) that too often
models of crowding are so vague that they cannot make predictions or be linked to findings
from neuroscience. However, my opinion is that the key difficulty is that visual recognition
itself is poorly understood (see Section 2.3), thus complicating our understanding of the
breakdown in recognition that is caused by crowding.

3.1.1.1 Spatial localization and mislocalization of objects and features

It is not disputed that the spatial localization of objects is worse in the periphery than in the
fovea (Westheimer [1982]; Klein and Levi [1987]; Hess and Field [1993]). These peripheral de-
ficiencies have been measured for both absolute location judgments and fine relative position
estimation. How to make the leap from these findings to interactions between multi-feature
objects in multi-element displays is unclear, since a model of detection, integration, and deci-
sion mechanisms becomes necessary. The simplest view is that flanking objects are confused
for target objects, which is called the “substitution” model of crowding (Chung and Legge
[2009]; Strasburger and Malania [2013]; Ester, Klee, and Awh [2014]; Zhang et al. [2012]).
Probably everyone would agree that substitution is a necessary component of crowding, but
it is currently an area of fierce debate whether substitution is a sufficient characterization
of crowding (Ester, Zilber, and Serences [2015]).

It seems probable that errors other than substitution errors arise from crowding. Unfortu-
nately, the particular nature of the experimental stimuli used complicates the issue. Different
types of stimuli are likely identified using disparate mechanisms, and how these mechanisms
interact when under the influence of crowding likely varies widely. This is discussed further
in Section 3.2.1. Suffice it to say, there does seem to be interactions between parts of objects,
since conjunctions between letters are observed—see especially Section 3.1.1.3 below on Fea-
ture Integration Theory. How the object parts are mislocalized, “pooled”, etc., depends on
the stimuli. A common assumption for parts-based interactions in crowding is that features
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are detected in a first stage, then combined together in a second stage to support recogni-
tion (Pelli et al. [2006]). A logical conclusion is that it is the second stage that is susceptible
to crowding, but not the first stage (Chung, Levi, and Legge [2001]; Neri and Levi [2006]).
Therefore, detection is unaffected by crowding (Pelli, Palomares, and Majaj [2004]).

Other descriptions of crowding, such as an overly coarse spatial resolution of attentional
mechanisms (Intriligator and Cavanagh [2001]) are hard to discriminate from the propos-
als described above. It is certainly conceivable that attentional factors cause the observed
substitutions, feature mislocalization, or pooling. On this we will stay agnostic, and instead
focus on the particulars of the interactions.

3.1.1.2 Textures versus objects

There are recent proposals that describe peripheral vision in terms of summary statistics and
texture processing (Balas, Nakano, and Rosenholtz [2009]; Freeman and Simoncelli [2011]),
with an accompanying computational model originating from computer vision (Portilla and
Simoncelli [2000]). This viewpoint is gaining popularity, but we believe it is less applicable
to our interest in letter processing. While the overall texture of lines of printed text are well
captured by the model, important structural details of individual letters are lost. The initial
developers of the texture model (Portilla and Simoncelli [2000]) acknowledged that it could
not capture all images equally well. Faces or other large single objects are unrealistically
distorted, defying summarization in terms of texture patterns. We believe that a parts-based
approach, involving relations between well-defined visual features, to be a more relevant
model.

3.1.1.3 Feature Integration Theory

Anne Treisman’s “Feature integration theory” (FIT), is one of the foremost attempts to
formalize a functional model of the object recognition process in terms of features and ob-
jects (Treisman and Gelade [1980]). She and her collaborators proposed that sets of “fea-
tures” are detected early in the visual system pre-attentively in parallel, then integrated
together to form distinct visual percepts. Breakdowns in the process of binding features
to their constituent objects, such as the incorrect migration of features to adjacent objects
when under challenging conditions such as peripheral viewing or brief displays, are known
as “illusory conjunctions.” These phenomena have been heavily studied by Treisman and
colleagues (Treisman and Schmidt [1982]; Treisman and Paterson [1984]; Prinzmetal [1981]).
Crowding and illusory conjunctions have sometimes been compared and contrasted. Pelli,
Palomares, and Majaj ([2004]) proposed that some of the effects reported in the illusory
conjunction literature could be due to attentional load or memory, as opposed to crowding,
which is typically defined to be primarily perceptual.

Some of the experiments of FIT are quite relevant, particularly those that involve purely
spatial features. Others, of less relevance to us, studied false conjunction of different feature
dimensions such as color and letter identity. One of the earliest papers by Treisman on
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FIT (Treisman and Gelade [1980]) had an experiment where the set of letters could allow a
spatial conjunction (“P” and “Q”, which could form an “R” if the diagonal of the capital
“Q” abandoned its host), and found an effect in search asymmetry. The results in Treis-
man and Paterson ([1984]) offer a more direct test, with displays comprising “S” characters
and vertical lines. In some cases, dollar signs (“$”) appeared, providing evidence for the
migration of spatial features between objects. William Prinzmetal performed similarly rele-
vant experiments, such as one in which circles with either a horizontal or vertical line could
combine to form a circle containing a plus sign (Prinzmetal [1981]). While some of these
studies were mentioned in Pelli, Palomares, and Majaj ([2004]), a comprehensive reappraisal
of this line of research, placed in the context of crowding, could be a valuable addition to
the modern canon of crowding research.

3.2 Experiments with crowded letter-like line

segment symbols

3.2.1 Introduction

It is well known that crowding has a deleterious influence on identification of targets (such
as letters) when the target is flanked by other symbols (Levi [2008]; Pelli and Tillman
[2008]), but the exact nature of the degradation is still unknown. Crowded stimuli have been
colorfully described as “a jumble,” “inchoate smudge,” “feature perturbations,” “illusory
conjuction,” “invalid feature combination,” etc. No doubt aspects of all of these descriptions
are accurate, and surely a loss of location and/or identity information is involved, but how
to quantify these effects?

Most would agree that object recognition consists of detection of low-level features, with
some process to bind these together to form distinct shapes. Attempts to study feature in-
teraction in crowding have typically been limited to artificial symbols whose identity has few
possibilities, such as Gabors with several possible orientations (Petrov and Popple [2007]),
Landolt Cs or Tumbling Ts (Hariharan, Levi, and Klein [2005]; Levi, Hariharan, and Klein
[2002]; Levi, Klein, and Hariharan [2002]; Danilova and Bondarko [2007]), or symbols that
vary along a continuous axis (Greenwood, Bex, and Dakin [2009]; Dakin et al. [2010]; Ester,
Klee, and Awh [2014]). Fewer studies have looked at crowding with conjunctions of two
feature dimensions. Those that have (Neri and Levi [2006]; Põder and Wagemans [2007])
used orientation as one dimension and color (or contrast) as the other. This type of conjunc-
tion may differ from ones based purely on multiple spatial features (Duncan and Humphreys
[1989]). For features that vary on a continual axis (such as the orientation of Gabor), valuable
characteristics such as feature averaging have been identified (Greenwood, Bex, and Dakin
[2009]; Dakin et al. [2010]), and challenged—(Ester, Klee, and Awh [2014]; Ester, Zilber,
and Serences [2015])), but how well do these principles generalize to letters? In contrast to
the previously described stimuli, the most likely representation of alphabetic characters is a
binary code where the presence or absence of features is what differentiates letters from one
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another (Gibson [1986]; Keren and Baggen [1981]), rather than one-dimensional values on a
continuum.

Studies with more complex symbols, such as English or Chinese characters, have charac-
terized interactions with more general descriptions of each character, such as “complexity”
as defined by ink area or skeleton length (Bernard and Chung [2011]; Zhang et al. [2009];
Pelli et al. [2006]; Wang, He, and Legge [2014]), or using letter similarity (discriminability)
as derived from a confusion matrix (Bernard and Chung [2011]; Freeman, Chakravarthi, and
Pelli [2012]; Hanus and Vul [2013]). To identify properties of feature interactions in crowding
that may be relevant to a task such as letter identification, we created artificial symbols
where the “alphabet” consisted of symbols that were the combinations of one or two line
segments, similar to stimuli used previously in an unflanked context (Townsend, Hu, and
Evans [1984]; Townsend, Hu, and Ashby [1981]; Wandmacher [1977]).

Using such stimuli, Townsend, Hu, and Evans ([1984]) clarified several important princi-
ples of feature perception with unflanked symbols. For example, they found that features in
their characters are not detected independently of one another. That is, some features could
be detected more (or less) reliably in the presence of another feature. Townsend, et al. also
found that different features have different detection probabilities. Testing specific proper-
ties such as these in a crowded context could help add quantitative constraints to models
that posit feature detection and integration. Furthermore, there are interactions specific to
multi-symbol stimuli (such as the closely spaced letter trigrams used for crowding) which
have been proposed, such as effects leading to “feature migration”, “mislocalization”, and
“illusory conjunctions.” By analyzing the error distributions of the psychophysical reports on
crowded percepts, primarily using the tools of conditional probability, we set out to address
several questions concerning the interaction of target and flanker features.

3.2.2 Experimental Methods

In order to bypass questions about what, exactly, the critical features for letter recognition
are, we designed a custom alphabet using stimuli made from distinct line segments features,
shown in Figure 3.1. An important aspect of our stimuli is that they have differing levels of
legibility, both crowded and uncrowded, much like letters of the alphabet. Our “alphabet”
had distinct clusters of confusable symbols, much like the groups of confusable letters in latin
alphabets, such as the lower case vowels (Bouma [1971]). In order to more closely mimic letter
recognition, in the experiments described below any of the 10 symbols could appear in any of
the letter positions, without constraints. This allowed us to identify effects across stimulus
classes and types that might have remained unexposed if the trials had limited sets in given
blocks.

3.2.2.1 Stimuli

3.2.2.1.1 Features. The four features used to construct each character of the alphabet
included two cardinally-oriented line segments: horizontal ( ) and vertical ( ), as well
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Figure 3.1: Ten symbol “alphabet” used in these experiments.

Figure 3.2: Response screen. Subjects indicated response by clicking on symbol with mouse.

as two oblique line segments: top titled left ( ), and top titled right ( ). The endpoints
of each of the line segments were positioned on a square bounding box around the center
of each symbol. The oblique segments connected the far corners of the box and were thus
longer (by

√
2 times) than the cardinal segments.

3.2.2.1.2 Symbols. Each character of the alphabet was composed of one or two features.
There were four singleton symbols (one for each feature) made up of a single feature. There
were six compound symbols: , , and four symbols we denote “scissors” ( , , , ).
The scissors symbols were composed of one cardinal segment and one oblique segment.

3.2.2.2 Experimental Setup

There were four experiments. For all experiments, stimuli were presented at 10◦ in the
lower visual field. In both Experiments 1 and 2, the symbol bounding box was 0.6◦×0.6◦.
Experiments 3 and 4 used larger symbols, 1.0◦×1.0◦. In Experiments 1 and 3, the stimuli
were single symbols, while in Experiments 2 and 4 they were crowded—surrounded closely
on the left and right by a flanking symbol. The center-to-center spacing of the symbols was
1.2 times the height (and width) of each symbol.

For all experiments, stimuli were presented at 10◦ in the lower visual field. In Experiment
1, the stimuli were single symbols, while in Experiment 2 they were crowded—surrounded



CHAPTER 3. CROWDING 58

closely on the left and right side by a flanking symbol. The center-to-center spacing of the
symbols in Experiment 2 was 1.2 times the height (and width) of each symbol. For both
Experiment 1 and 2, the symbol bounding box was 0.6◦×0.6◦. Experiment 3 and Experiment
4 used larger symbols, 1.0◦×1.0◦. Experiment 3 tested unflanked symbols while Experiment
4 tested flanked symbols.

A trial proceeded as follows. A fixation circle was presented in the center of the screen.
As soon as the subjects hit a key, a stimulus was presented at 10◦ below fixation, then
erased after a duration of 150 ms. A response screen then appeared, looking exactly like the
screenshot in Figure 3.2. The subject used a mouse to select their response. For Experiment 1
and Experiment 3, subjects reported the target letter, and for Experiment 2 and Experiment
4 they were instructed to report only the center letter of the trigram.

3.2.2.3 Subjects

Subjects were seated in darkened room, and viewed the stimulus using their normal correction
with their right eye occluded with an eye patch. All had 20/20 or better vision. Five
young adults (ages 19–21, all female) participated in Experiment 1 and Experiment 2. Each
subject completed 1000 trials for Experiment 1 and 3000 trials for Experiment 2. Blocks
were intermixed between experiments. Four adults (ages 18–28, one male), different from the
subjects in Experiment 1 and Experiment 2, participated in Experiment 3 and Experiment 4.
Each subject completed at least 2000 trials for Experiment 3 and 3000 trials for Experiment
4. Blocks were intermixed between experiments.

3.2.3 Statistical Methods

Most of the methods used in this chapter rely on comparing confusion matrices, typically the
10×10 confusion matrices for the whole “alphabet.” Often the whole matrix will be “condi-
tioned” on a value, such as the occurrence of a certain flanker. To generate an appropriate
confusion matrix simply involves extracting those cases that satisfy the condition. This may
reduce the number of cases, so the number of trials for proportions in each cell is used in the
p-value estimation techniques described below.

3.2.3.1 Comparing confusion matrices

We utilize several methods to compare confusion matrices, typically reporting the results of
the disparate methods. Most simply, given two confusion matrices, a count can be made
of which cells have statistically different values. To do this, a maximum likelihood (ML)
estimate is made based on the number of trials and proportions from each confusion matrix.
Then, to determine a p-value, 1000 Monte Carlo simulations generate pairs of synthetic
confusion matrices based on the estimate. From the simulations, a distribution of differing
cell counts is formed. Finally, the p-value is used to determine where in this distribution the
observed results fall.
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A similar procedure is used for an alternative means to quantify confusion matrix dif-
ferences, the maximum Z-score of the difference between corresponding cells. For each cell,
a Z-score can be estimated as described below in Section 3.2.3.2. The maximum Z-score is
a simple measure of how different pairs of cells are between the two matrices. The Monte
Carlo procedure described above can again be used to generate p-values. Lastly, measures
of matrix agreement such as X2 or the likelihood ratio G2 (both described in Chapter 2.2)
can be used to compare whole matrices.

3.2.3.2 Comparing proportions

To test the null hypothesis that two proportions are the same, a standard equation which
yields a Z-score is used:

Z =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2

)
(3.1)

The variables p̂1 and p̂2 are the estimates of the two proportions (from the empirical
measurements), with n1 and n2 denoting the number of relevant trials for each proportion.
p̂ represents the estimate given the null hypothesis that the two proportions are the same:

p̂ =
h1 + h2
n1 + n2

(3.2)

The number of “hits” are h1 and h2, out of n1 and n2 trials, respectively. Intuitively,
given the null hypothesis that p̂ is the actual proportion being measured by both conditions,
Equation 3.1 describes the difference between the two normal variables, which is itself a
normal distribution centered at the difference between the two proportions, with a standard
deviation given by the sum of the standard deviations of the two distributions. The variances
of the two proportions are p̂(1−p̂)

n1
and p̂(1−p̂)

n2
, respectively, assuming the null hypothesis.

3.2.3.3 Confidence intervals for proportions

To get the 95% confidence intervals shown in the plots, a standard estimate for proportions
is used. Specifically, Formula 3.3 presents the estimate for an empirical proportion of p̂ for
n trials, with significance testing at a level of z standard percentile units. For example, for
95% confidence intervals (two-tailed), z=1.96. If not stated otherwise, all figures in this
subsection with error bars can be assumed to be calculated using this method.

p̂± z
√

1

n
p̂(1− p̂) (3.3)
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Figure 3.3: Single symbol confusion matrix, averaged across observers

3.2.4 Results: Experiment 1 and Experiment 2

3.2.4.1 Experiment 1

Experiment 1 measured identification for symbols presented in isolation, thus providing a
baseline for within-symbol feature interactions. The results, presented in a 10×10 confusion
matrix, are shown in Figure 3.3, averaged across observers.

3.2.4.1.1 Uncrowded feature dependencies We first evaluated feature dependencies
for the uncrowded stimuli, following the analysis of Townsend, Hu, and Evans ([1984]). First,
we determined hit and false alarm rates, shown in Table 3.1. Notably, the hit rate for the
horizontal feature is poor, while the hit rate for the vertical feature is slightly greater, followed
by high hit rates for the two oblique features. The cardinal directions had 5% false alarm
(FA) rates, as opposed to miniscule FA rates for the oblique features. Feature false alarms
are defined as the report of a singleton or compound symbol containing a feature that is not
present in the target symbol. It is clear from the confusion matrix shown in Figure 3.3 that
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Hit rate 0.721 0.889 0.979 0.986
FA rate 0.0505 0.0513 0.00692 0.00846
d’ 2.23 2.85 4.5 4.59

Table 3.1: Uncrowded feature hit and FA rates, based on all trials

PH( |...) PH( |...) PH( |...) PH( |...)
PH(...| ) 0.721 0.986 0.978 0.986
PH(...| ) 0.945 0.889 0.968 0.978
PH(...| ) 0.48 0.803 0.979 0.986
PH(...| ) 0.475 0.772 0.977 0.986

Table 3.2: Uncrowded conditional feature hit rates—probability of a hit (column feature),
conditioned on presence in stimulus of (row feature)

these false alarms did not happen except in the context of a scissors symbol. For example,
false alarms for the horizontal feature came primarily from just two cells: a response of
for a stimulus, and a response of for a stimulus.

A feature hit or false alarm that is dependent on other features can be formalized using
conditional probability. The conditional feature hit rates are shown in Table 3.2. There
are significant differences between the conditional and unconditional proportions. For exam-
ple, the hit rate for the horizontal feature, when conditioned on the left oblique present—
PH( | )=0.48, is significantly lower than the hit rate for the feature alone PH( )=0.721.
The existence of obliques modulates the hit rate of the cardinals. Even further, this level of
conditional alone is not sufficient to describe the results, since this rule fails to capture the
fact that the horizontal miss proportion is smaller when the oblique was retained. That is, to
adequately describe this error requires an expressions such as P( | ), which is essentially
a term at the symbol level, or a cells from the 10×10 confusion matrix of Figure 3.3.

Similar conclusions follow from Table 3.3, the conditional analysis for false alarms. An
interesting aspect of this table is the higher rate of conditional false alarms involving the two
cardinal symbols (0.841 for PF ( | ) and 0.846 for PF ( | )). This is essentially a feature-
level confusion between these two symbols. However, importantly this feature confusion is
dependent on the presence of an oblique in the target, again clear from Figure 3.3. This
observation strengthens the point that a model at the symbol level is necessary to capture
these results, especially for scissors symbols.

To study the types of errors identified in the previous paragraphs, the errors resulting
from scissors stimuli will now be analyzed in isolation. This analysis focuses on the four
relevant rows of the confusion matrix shown in Figure 3.3. To see the pattern of errors in
this confusion matrix subset more clearly, the columns for each row can be reordered to reveal



CHAPTER 3. CROWDING 62

PF ( |...) PF ( |...) PF ( |...) PF ( |...)
PF (...| ) 0 0.0841 0.00667 0.0123
PF (...| ) 0.0846 0 0.00923 0.0123
PF (...| ) 0.0508 0.0651 0 0.00872
PF (...| ) 0.0518 0.0364 0.00769 0

Table 3.3: Uncrowded conditional feature false-alarm rates—probability of a false alarm
(column feature), conditioned on presence in stimulus of (row feature)
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Figure 3.4: Pattern of responses for unflanked scissors stimuli, grouped by the type of error.
Icons indicate target stimulus presented.
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consistent effects based on the target stimulus. For example, the switching of the oblique
feature is one stereotypical error that could occur. Visualizing this error based on Figure 3.3
is difficult, since it involves four seemingly unrelated cells. Figure 3.4 thus presents the four
rows of the confusion matrix, reordered based on the class of error, and presented graphically
instead of in tabular form. The proportion of occurrences is plotted on the ordinate, for an
error type indicated by the abscissa, as shown on the tick labels. Most error types involve a
transformation of features of the target, such as “cardinal lost,” except for particular errors
such as “confusion with .”

There are two distinct groups of responses: those involving vertical scissors ( , ), and
those involving horizontal ones ( , ). From Figure 3.3, it is already clear that vertical
scissors are more likely to be correctly identified than horizontal ones—Figure 3.4 breaks
down the specific cases. The proportion correct groups based on the cardinal feature (vertical
scissors are correct more often), and the cardinal lost is more prevalent for horizontal scissors.
The cardinal features are switched (but the obliques are retained) similarly for the four
symbols, approximately 10% of the time for each. There is virtually no difference between
errors involving the left and right obliques. These similarities and differences will be utilized
for validation in subsequent analyses. In summary, we find, in agreement with Townsend,
Hu, and Evans ([1984]), that:

• The four features have different detection probabilities and interaction effects. A no-
table exception is the two oblique symbols, which are nearly indistinguishable from
each other statistically.

• The probability of detecting a feature is not independent of the other features present
in the stimulus, nor are the individual response probabilities independent of what other
features are reported.

• The probability of a feature “lost” was 17% (with 98% of those coming from scis-
sors stimuli), while the probability of a feature gained (called by Townsend a “ghost
feature”) was just 2%. This disproportion between features gained and features lost
agrees well with the literature.

3.2.4.2 Experiment 2

Experiment 2 measured identification for the center symbols of a closely spaced (1.2× sym-
bol size center-to-center spacing) trigram of symbols. Figure 3.5 shows the 10×10 confusion
matrix for the central letter, combined over all flankers and subjects. The errors from Ex-
periment 1 (primarily the errors with scissors stimuli) shown in Figure 3.4 were maintained,
as well as many new types of errors added. How to characterize the complex pattern of
errors induced by crowding? We first proceed by micro-analyses like those performed for
Experiment 1.
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Figure 3.5: Confusion matrix for crowded symbols.

PH( |...) PH( |...) PH( |...) PH( |...)
PH(...| ) 0.577 0.754 0.809 0.789
PH(...| ) 0.56 0.673 0.651 0.621
PH(...| ) 0.439 0.585 0.769 0.731
PH(...| ) 0.46 0.542 0.743 0.75

Table 3.4: Crowded conditional feature hit rates

3.2.4.2.1 Crowded feature hit and false alarm rates The conditional feature and
false alarm rate are given in Table 3.4 and Table 3.5. There is less heterogeneity in these
tables than in the unflanked tables, showing more consistency between rows.

3.2.4.2.2 Scissors error grouping To more clearly see the errors made with scissors
stimuli, we grouped the relevant errors like we did for the uncrowded confusions. The results
are shown in Figure 3.6. There were more incidences of different types of errors overall than
the unflanked results from Figure 3.4. Differences between vertical and horizontal scissors
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PF ( |...) PF ( |...) PF ( |...) PF ( |...)
PF (...| ) 0 0.171 0.158 0.152
PF (...| ) 0.21 0 0.189 0.172
PF (...| ) 0.185 0.186 0 0.165
PF (...| ) 0.198 0.179 0.18 0

Table 3.5: Crowded conditional feature false-alarm rates
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Figure 3.6: Pattern of responses for flanked scissors stimuli, grouped over error type.
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Figure 3.7: Overall rate of mislocation errors for each of the symbols in Experiment 2.
Symbol on the abscissa was either of the flankers (but not the target), and was erroneously
reported as the target.

were still present. Like for unflanked symbols, the horizontal was “lost” much more often
than the vertical (0.30 versus 0.17, respectively). The oblique was lost more often for the
crowded vertical scissors (0.15) than for horizontal scissors (0.05). Interestingly, correct
identification was more similar between horizontal and vertical scissors (proportions of 0.25–
0.30) when the symbols were crowded, unlike the large difference between horizontal and
vertical scissors when the symbols were presented in isolation. Confusions with and
switching of the cardinals were errors unique to crowding that had approximately the same
occurrence proportion (∼0.10 for both types of errors, regardless of original target type).
Confusion with , on the other hand, happened slightly more often with vertical scissors
(0.09) than with horizontal (0.06). The remaining types of errors were small but nonzero,
and not significantly different between vertical and horizontal scissors.

3.2.4.2.3 Proportion of mislocation errors Erroneously reporting a flanker symbol
in place of the target is known as a “mislocation error.” The proportion of mislocation errors
are plotted in Figure 3.7 as a function of flanker symbol. That is, for each type of symbol,
we extracted those trials where one, or both, of the flankers, (but not the target) was the
corresponding symbol. The mislocation error rate was then computed as the proportion of
these trials in which the symbol was erroneously reported as the target. A more detailed
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Figure 3.8: Mislocation error rates for each of the symbols in Experiment 2, for flanker
occurrence as specified in the legend.

view is given in Figure 3.8, which separates the cases by left and right flanker, as well as the
case where one symbol is repeated in both flankers. For the compound symbols, mislocation
rates were approximately double when a symbol appeared in both flankers.

3.2.4.2.4 Symmetry of L and R flankers Does a flanker feature or flanker symbol
located to the left of the target letter have the same effect on target confusions as that
feature or symbol on the right? Most would assume so, and almost all models take it as a
given. To directly test this assumption, we compared conditional confusion matrices based
on the two cases. Figure 3.9 presents an example of two conditional confusion matrices. In
this example, these matrices are conditioned on a horizontal feature present in either the
left flanker (left panel) or right flanker (right panel). For each confusion matrix, 8700 trials
were included, distributed approximately equally across the ten stimulus rows.

Results of comparing left and right matrices are shown in Table 3.6 and Table 3.7, for
features and whole symbols, respectively. P-values less than 0.05 indicate that the hypothesis
that the confusion matrices are the same must be rejected. Based on a featural analysis using
the number of statistically significant cells, for all features except , the number of cells
that differed between the matrices are well within the 95% confidence intervals expected
by chance. If quantifying based on individual Z-scores, there are cells in the matrix with a
larger difference for both oblique features.
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Figure 3.9: Confusion matrices for Experiment 2, conditioned on left flanker containing a
horizontal feature (left panel), or right flanker containing a horizontal feature (right panel).

Feature # diff p-val max Z p-val
1 0.998 2.027 0.991
4 0.711 2.764 0.43
7 0.219 3.767 0.017
10 0.031 3.843 0.013

Table 3.6: Comparison of confusion matrices conditioned on a flanker feature located in
the left versus right flanker. Second column indicates number of cells (out of 100) that
differ significantly between the two conditions. P-value of this cell count is determined using
1000 Monte Carlo simulations. Fourth column is maximum Z-score of difference between
corresponding cells in the two matrices. P-value is determined using 1000 Monte Carlo
simulations. Bold values indicate statistical significance of p-values.

Based on a symbol-level analysis, six out of the ten symbols have statistically significant
number of different cells (up to 13 different cells). However, the relatively small maximum
Z-scores shown in the right columns indicated that the individual cell values are not hugely
different from what could be expected by chance. Thus, there is an effect, but it is not
particularly strong in any one cell.

3.2.4.2.5 Features versus symbols (as flankers) To examine whether features of
flankers act independently on the targets, we compared the conditional confusion matrices
for: a full symbol on either side of a target, versus the features for that symbol split amongst
the left and right flankers. For example, consider the test for the symbol. First, a
confusion matrix was computed for those trials where either the left or right flanker was .
Then, a separate confusion matrix was computed that included trials with either a feature
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Symbol # diff p-value max Z p-value
8 0.075 2.688 0.367
10 0.025 3.008 0.159
12 0.001 3.023 0.144
10 0.021 3.029 0.135
12 0.003 2.997 0.151
12 0.003 3.385 0.038
7 0.198 3.217 0.08
13 0.002 4.119 0.001
6 0.31 2.65 0.471
3 0.857 2.576 0.53

Table 3.7: Comparison of confusion matrices conditioned on a flanker symbol on the left,
versus flanker symbol on the right

Symbol # diff p-value max Z p-value G2 p-value
10 0.01 4.23 0.01 121 <0.001
1 0.94 2.35 0.64 55.9 0.06
1 0.96 2 0.94 44.8 0.32
3 0.53 2.67 0.32 48.8 0.19
1 0.95 2.12 0.83 42.5 0.41
9 0.02 3.38 0.02 98.2 <0.001

Table 3.8: Conditional confusion matrices for features vs. symbols decomposition. See text
for details.

on the left and a on the right; or, a on the left and a on the right. The resultant
two confusion matrices were then compared using the methods described. To ensure equal
stimulus complexity, only stimuli comprising three compound symbols were used for this
analysis (4706 trials). The results are shown in Table 3.8. For the non-scissors compound
symbols ( and ), the confusions induced by the constituent features of each symbol
differ significantly from the results of the whole symbol. For the four scissors symbols, on
the other hand, the results are nearly indistinguishable between a feature and symbol level.

3.2.5 Discussion of Experiments 1 and 2

3.2.5.1 Asymmetries

We found significant symbol inhomogeneities in the data. Importantly, the and symbols
were the most likely to be identified correctly, and were most conducive to mislocations when
acting as flankers. The scissors stimuli, on the other hand, tended to be either confused with
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each other, or confused with the and . Within the scissors, there was a difference
between those featuring a horizontal feature and those featuring a vertical feature. The
horizontal was more likely to be “lost” than the vertical.

3.2.5.2 Symbols versus features

Could we decisively show that processing of our stimuli involved whole symbols, versus
features? Our results were equivocal. For the scissors symbols, the hypothesis of independent
feature processing could not be rejected (Table 3.8). However, for the other two compound
symbols ( , ) there was a significant difference from independent feature processing.

3.2.6 Experiment 3 and Experiment 4

We wondered if one reason for the inhomogeneities observed in Experiment 1 and Experiment
2 was the difficulty of the task. From Figure 3.3, the four scissors were identified correctly
only 61.5% of the time, even when unflanked. The remaining symbols were all identified
correctly greater than 93% correct. When flanked, scissors were identified correctly only 25-
30% of the time (Figure 3.5). Is it possible that because the scissors were so hard to identify,
subjects would avoid these symbols, leading to the results we saw for the and symbols?
To explore this possibility, we repeated the experiments, this time using a larger target size:
1◦×1◦. Four subjects participated in this experiment. Except for the size of the symbols,
the experimental setup was the same as Experiment 1 and Experiment 2. Experiment 3
tested unflanked symbols (like Experiment 1), and Experiment 4 tested flanked symbols
(like Experiment 2).

3.2.7 Results

3.2.7.1 Overall confusions

Figure 3.10 shows the unflanked confusion matrix for the larger letters, combined across sub-
jects. As desired, subjects had little difficulty identifying the isolated symbols. Proportion
correct was 0.96 overall, including 0.89-0.97 for the scissors. One of the only errors was loss
of the horizontal cardinal, which had a proportion of 0.06. Figure 3.11 shows the flanked
confusion matrix for the larger letters, marginalized over all flankers and combined across
subjects. First note that the proportion correct for the scissors is much more reasonable for
the larger letters: 0.51-0.59. Identification for the singletons was 0.47-0.73 and for and

was 0.72 and 0.63, respectively. There was less difference in identifiability between the
scissors and non-scissors.

3.2.7.2 Scissors errors

The types of errors made for scissors targets for Experiment 4 are shown in Figure 3.12.
Note that for this plot a log ordinate is used to more clearly see the breakdown of errors,
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Figure 3.10: Confusion matrix for larger uncrowded symbol (Experiment 3)

which are more evenly distributed, and smaller overall, than in Experiment 2 (Figure 3.6).
Besides the different magnitudes, the results between experiments are very similar. There
were two small differences between horizontal and vertical scissors in these results, as in
Experiment 2. First, the horizontal cardinal was more likely to be lost than the vertical
cardinal (0.15 versus 0.04, respectively). Second, vertical scissors were more likely to be
confused with (0.11, versus 0.025 for horizontal). Interestingly, there was no horizontal
versus vertical difference in the “oblique lost” error, which was a significant difference when
using the smaller symbols (Experiment 2).

3.2.7.3 Mislocation error rates

Mislocation error rates for each of the symbols are shown in Figure 3.13. This plot agrees
very well with the results from Experiment 2 in Figure 3.8, albeit with lower rates over-
all, especially for the singleton flankers. The asymmetry with the left versus right oblique
singleton is unique to the larger symbols. The mislocation errors involving had almost
identical magnitudes, while those involving scissors and had higher mislocation error
rates (versus Experiment 2) when a symbol is repeated, and nearly identical mislocation
error rates otherwise.
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Figure 3.11: Confusion matrix for larger crowded symbol (Experiment 4)

3.2.7.4 Left/right symmetry hypothesis

Table 3.9 and Table 3.10 show the left/right symmetry analysis for features and symbols,
respectively. There is a substantial amount of asymmetry, for both features and symbols, es-
pecially with the G2 measure of computing confusion matrix correspondence. The singletons
showed a considerable asymmetry between their effects on the left versus the right.

3.2.7.5 Features versus symbols (as flankers)

As for the previous experiment (Experiment 2), the hypothesis of symbol-level (versus in-
dependent feature-level) flanker influence was tested. Table 3.11 shows the analysis for the
larger symbols. Even with the more consistent perceivability of the symbols in this experi-
ment, the results in Table 3.11 are remarkably similar to the results from Experiment 2 in
Table 3.8. For and , there are significant differences between the symbol-based and
the feature-based confusion matrices. Using both differing cell count and G2 yields highly
significant results. Using a metric based upon Z-score reveals differences in symbol versus
feature interactions for , but this special case was not pursued, as the G2 of this symbol
was very similar to the other scissors, and its differing cell count was just slightly higher.
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Figure 3.12: Pattern of responses for larger flanked scissors stimuli, grouped over error type
and plotted on a logarithmic scale.

Symbol # diff p-value max Z p-value G2 p-value
8 0.170 3.47 0.030 100 0.075
8 0.140 3.07 0.130 106 0.030
10 0.030 2.88 0.340 106 0.032
9 0.070 3.03 0.170 114 0.008

Table 3.9: Experiment 4, left versus right feature symmetry hypothesis
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Figure 3.13: Mislocation error rate for each symbol type in Experiment 4

Symbol # diff p-value max Z p-value G2 p-value
10 0.010 4.44 0.010 156 <0.001
9 0.010 2.94 0.140 123 0.002
13 0.010 4.7 0.010 164 <0.001
6 0.160 2.87 0.230 91.8 0.193
9 0.020 2.65 0.290 125 0.001
7 0.070 2.83 0.230 125 0.001
4 0.510 2.74 0.320 92.8 0.174
6 0.120 2.81 0.250 131 <0.001
7 0.080 2.91 0.190 136 <0.001
7 0.050 2.51 0.530 127 <0.001

Table 3.10: Experiment 4, left versus right symbol symmetry hypothesis



CHAPTER 3. CROWDING 75

Symbol # diff p-value max Z p-value G2 p-value
12 0.010 4.02 0.020 105 0.038
3 0.480 2.4 0.610 49.7 0.998
4 0.200 2.66 0.230 48.8 0.998
3 0.500 2.78 0.270 56 0.985
5 0.130 3.6 0.040 49.1 0.998
12 0.010 3.23 0.090 109 0.021

Table 3.11: Experiment 4, conditional confusion matrices for features vs. symbols decompo-
sition

111 211 112 212 121 221 122 222
Stimulus complexity (left center right),

1=singleton, 2=compound
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Figure 3.14: Proportion correct as a function of stimulus complexity for each subject, nor-
malized to average proportion correct for each subject. Key on x-axis indicates number of
features in left flanker, target, and right flanker symbols, from three singletons (leftmost
column) to three compounds (rightmost column).

3.2.7.6 Proportion correct by stimulus complexity

One advantage of our stimuli is that the “complexity” of each stimulus is known, since they
are composed of well-defined features. Specifically, the stimulus complexity can be defined
by the number of features (1 or 2) in the target and each flanker. Figure 3.14 plots the
proportion correct for each type of stimulus, starting with three singletons on the left, to
three compounds on the right. The key in the x-axis ticks indicates the complexity of each
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symbol. Singleton symbols are indicated by a “1” and compound symbols are indicated by
a “2.” The order of the three symbols in each tick mark is: left flanker, target symbol, right
flanker. For example, “212” means that the left flanker is a compound symbol, the target
symbol is a singleton, and the right flanker is a compound symbol. The results are fairly
consistent across subjects and are relatively intuitive. Subjects found it easiest to identify
the center of three singletons, followed by a singleton flanked by one compound and one
singleton, and so on. Surprisingly, results were nearly the same for 121, 221, 122 and 222
stimuli, in terms of normalized proportion correct. This implies that for these stimuli, the
number of flanker features did not significantly affect performance with crowded compound
targets.

3.2.8 Discussion

The goal of these experiments was to study feature interactions in crowding. Because of
the well-defined nature of our stimuli, aspects of feature detection and integration could be
directly evaluated in a way that overcame assumptions about the putative features of letters.
We were particularly interested in acquiring results to help constrain a modeling of crowding
based on interactions of symbols and/or features. The asymmetries and inhomogeneities we
found are indispensable for such a goal.

To make a satisfiable model for these data would require a scheme that integrated both
feature-level and symbol-level interactions. Especially for the symbol, and slightly less so
for the symbol, symbol-level interactions dominate the observed results. For the scissors
stimuli, on the other hand, feature-level interactions could not be rejected. Across all types
of stimuli, there are strong dependencies on the entirety of features in the display.

Results of mislocation errors from both experiments revealed interesting trends. First,
it was notable that withstanding the difference in percent-correct patterns between the two
experiments (Experiment 2 and Experiment 4), relative mislocation error rates agreed well
between the two letter sizes. Mislocation error rates for a singleton target decreased as
a function of flanker complexity, while mislocation error rates for compound targets were
relatively flat—that is, independent of the number of flanker features. The decrease could
be a result of the dissimilarity effect in crowding, in which dissimilar flankers crowd less
than similar flankers (Bernard and Chung [2011]; Kooi et al. [1994]; Zhang et al. [2009]).
The non-dependence of flanker complexity for compound targets could reveal a saturation
in terms of features in the display. It is possible that once a sufficient numbers of target
and flanker features are present, additional features do not radically affect perception of a
crowded stimulus.

In summary, a model capable of capturing all of the effects we observed would be chal-
lenging. In particular, the lack of independent usage of target and flanker features challenges
the most naive “bag of features” models. The difference in behavior based on complexity
class is unsurprising based on modulation of crowding by similarity (previous paragraph).
The difference between the horizontal and vertical features could be a function of orientation
relative to visual field location. The distinct effects of and are harder to explain. It is
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possible that the symmetry in these shapes conferred a cue unavailable in the scissors. An-
other possible explanation is their likeness to conventional familiar symbols (an “X”, “x,” or
multiplication symbol; and a plus sign or “t,” respectively). More experiments are necessary
to explore these possibilities.
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3.3 Crowded Tumbling-E acuity at varying contrast

and eccentricity.

3.3.1 Introduction

While the deleterious influence of crowding has been established for some time, it is unclear
exactly how different stimulus attributes modulate the amount of crowding. For exam-
ple, it was shown previously that when the contrast of the stimulus is low, crowding is
reduced (Kothe and Regan [1990]; Giaschi et al. [1993]) or absent (Simmers et al. [1999]).
However, several of these studies used printed letter charts in a way that confounded acuity
limitations and spacing limitations (Kothe and Regan [1990]; Giaschi et al. [1993]), and did
not test very close spacings. Specifically, these studies generally measured crowded versus
uncrowded acuity. Crowded acuity was determined as the threshold acuity when the target
was flanked by bars or letters at a fixed nominal letter spacing. The entire stimulus (with a
fixed nominal spacing) could be made larger or smaller.

This method of co-varying the size and spacing was widely used in the past, either by
varying viewing distance (Flom, Weymouth, and Kahneman [1963]; Latham and Whitaker
[1996]), or with printed cards (Jacobs [1979]), but fell out of favor. There are some recent
notable (and relevant) exceptions (Chung [2014]; Song, Levi, and Pelli [2014]; Pelli, Song,
and Levi [2011]). A more common procedure nowadays is to use a fixed size stimulus, and test
various flanker spacings. The typical result is that flankers located near the target greatly
impair performance, while far flankers do not impact performance whatsoever.

Ways to measure the critical spacing include threshold spacing derived from percent
correct measurements (Flom, Weymouth, and Kahneman [1963]; Bouma [1970]; Tripathy and
Cavanagh [2002]; Siderov, Waugh, and Bedell [2013]), or contrast thresholds (Chung, Levi,
and Legge [2001]; Pelli, Palomares, and Majaj [2004]; Strasburger, Harvey, and Rentschler
[1991]; Levi, Hariharan, and Klein [2002]). Most prevalent is critical spacing derived from
constant stimuli presentations. Psychometric functions are fit to the data, and a variety
of options exist for critical spacing quantification. For percent correct measurements, fixed
numerical percent correct thresholds can be used (50%-90%), as well as relative metrics,
such as decrease of 1/e from unflanked performance (Tripathy and Cavanagh [2002]). Some
have determined the farthest flanker location yielding a statistically significant difference
in percent correct from unflanked stimuli (Danilova and Bondarko [2007]). For contrast
thresholds, several determinations have also been used, including the intersection of a two-
line fit to contrast-versus-spacing on log-log plots, mathematically (Chung, Levi, and Legge
[2001]) or by eye (Pelli, Palomares, and Majaj [2004]). The spacing causing doubling of
unflanked contrast threshold has also been used (Levi, Hariharan, and Klein [2002]).

Technical details may be a reason identification of crowding at low contrast has remained
elusive. While the crowding zone for high-contrast, peripherally located stimuli can be
easily determined due to its large extent, when contrast is low, stimuli must be larger simply
to enable correct identification. The impact of crowding on such large stimuli could thus
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be minimal. The targets themselves may exceed the critical spacing at a given eccentricity.
This is the usual explanation used by contemporary researchers (Siderov, Waugh, and Bedell
[2013]) who do find evidence of low-contrast crowding. Indeed, very close spacings must be
used to reveal low-contrast crowding, especially at locations close to the fovea.

The effect of contrast on crowded target identification has been a goal of some studies,
but none has explored the parameter space systematically. Some studies have looked at
differences between target and flanker contrasts (Chung, Levi, and Legge [2001]; Pelli, Palo-
mares, and Majaj [2004]; Rashal and Yeshurun [2014]). Another, less well known study (van
Nes and Jacobs [1981]) looked at a variety of contrasts and eccentricities, but over a more
limited range of values, and did not modulate flanker spacing.

This chapter summarizes an experiment we performed to systematically explore the ef-
fects of eccentricity, contrast, and spacing on target identification of Tumbling-E patterns.
The first part (Section 3.3.2 to Section 3.3.8) takes a more clinical approach, and shows
how usage of traditional letter charts in the periphery may be susceptible to undesirable
crowding influences, including in low contrast situations. These sections have been modified
from Coates, Chin, and Chung ([2013c]), with Section 3.3.7 and Section 3.3.8 originating
in supplemental Appendices A and B, respectively. The final section of this chapter, Sec-
tion 3.3.9, introduces a quantitative model of the empirical data, which has been presented
in talk (Coates, Chin, and Chung [2013a]) and poster (Coates, Chin, and Chung [2013b])
form at scientific meetings.

3.3.2 Clinical motivation

Visual acuity measurement is one of the most fundamental methods to assess visual per-
formance in the clinic, and the most common instrument for assessing acuity is the printed
letter chart (Bailey [2012]). Letter charts are utilized in a wide variety of situations, so it is
important to understand the factors that affect acuity measurements under differing stimulus
and observer conditions. The current best letter chart design is likely to be the Bailey-Lovie
chart (Bailey and Lovie [1976]), or variants of it (e.g. the ETDRS chart (Ferris et al. [1982])
or the Lea symbol chart (Hyvärinen, Näsänen, and Laurinen [1980])). A characteristic of
these charts is that there are five optotypes on each line and the spacing between adjacent
optotypes (one optotype width) is designed to minimize the effect of contour interaction.
Contour interaction refers to the degrading effect on acuity due to the presence of nearby
contours. Although acuity in the presence of this effect can be informative, for example to
help detect amblyopia (Hyvärinen, Näsänen, and Laurinen [1980]; McGraw et al. [2000]), the
usual desire of clinicians is to avoid the deleterious influence that may introduce undesired
variability to measurements of acuity (Bailey and Lovie [1976]). The adoption of a spacing of
one full optotype width between adjacent optotypes on letter charts comes from the findings
of Flom et al. (Flom, Weymouth, and Kahneman [1963]; Flom, Heath, and Takahashi [1963]).
Flom and colleagues measured the accuracy for identifying the orientation of small, high-
contrast Landolt-C optotypes in the presence of flanking bars at a range of target-flanker
spacings. When expressed in terms of multiples of the size of the gap of the Landolt-C, they
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found that flanking bars beyond 5 gap widths (equivalently “5 bar widths”, which equals
one full letter width) had little detrimental effect on identification of the direction of the gap
in the Landolt-C. However, these results, and the design of the Bailey-Lovie chart, assume
foveal viewing and are based on high-contrast targets.

In the clinic, it is not uncommon to encounter patients who are unable to view a letter
chart foveally, as in cases of people with central vision loss or even for patients with mild
macular oedema. It is necessary to understand how the measured acuity of these patients
might be affected by contour interaction, or “crowding.” Flom ([1991]) made a distinction
between these two terms, but we use them interchangeably in this study (Chung, Levi,
and Legge [2001]). Previous studies have shown that the deleterious effect of crowding on
acuity extends over 5 bar widths in the periphery (Jacobs [1979]; Leat, Li, and Epp [1999]),
but the maximum spatial extent of the interference, in terms of bar widths at resolution
threshold, has not been quantified (Flom [1991]). There has been extensive study of the
angular spatial extent of crowding in the periphery (Bouma [1970]; Toet and Levi [1992]; Pelli,
Palomares, and Majaj [2004]), and it is well known that isolated letter acuity changes with
eccentricity (Jacobs [1979]; Weymouth [1958]). However, since the nominal critical spacing
(the letter separation in terms of bar or letter widths necessary to overcome crowding) is
dependent on both of these two variables, how it changes with eccentricity at resolution
threshold remains an open question. The non-trivial issue of nominal versus angular critical
spacing is discussed further in Section 3.3.7. The first goal of this study is to identify the
nominal critical spacing in the periphery.

In addition to high contrast acuity, low contrast acuity is routinely assessed for some
groups of patients in the clinic (e.g. low vision patients or patients with cataracts or corneal
problems), since low contrast acuity may be more sensitive than traditional high contrast
acuity in detecting certain abnormal ocular conditions (Regan and Neima [1984]; Woods,
Tregear, and Mitchell [1998]; Kleiner et al. [1988]; Regan and Neima [1983]; Schneck et al.
[2004]; Haegerstrom-Portnoy [2005]). While it is now established that acuity measurements
from low contrast charts viewed foveally will be less affected by crowding than their high
contrast counterparts (Kothe and Regan [1990]; Bailey et al. [1993]; Giaschi et al. [1993];
Pascal and Abadi [1995]; Simmers et al. [1999]; Siderov, Waugh, and Bedell [2013]), it is
unclear if this same reduction in the influence of crowding occurs peripherally. The second
goal of this study is to determine the effect of contrast on the critical spacing in the periphery.

When using low contrast letter charts, how the contrast of the optotype affects the
measured acuity, particularly in the presence of flanking letters in the periphery, is also an
open question. For single-letter testing, it has been shown that at the fovea, above some
critical contrast (the minimum contrast that still yields the maximal acuity) in the range of
20-40% Weber contrast, there is little change in letter or grating acuity with contrast (Herse
and Bedell [1989]; van Nes and Jacobs [1981]). In the periphery, Thibos, Still, and Bradley
([1996]) found a critical contrast of approximately 20% for resolution of gratings located at
30 degrees in the nasal visual field. The critical contrast for reading has also been identified,
with values ranging from 2-5% (O’Brien, Mansfield, and Legge [2000]), 10% (Chung and
Tjan [2009]), to 20% (Legge, Rubin, and Luebker [1987]). It is unknown exactly how the
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measurement of acuity in the presence of adjacent letters, as in the case of a letter chart,
affects the critical contrast, and how the critical contrast for acuity measurement changes
from foveal to peripheral viewing of a chart. If the critical contrast for a given condition (e.g.
peripheral viewing of a chart) is below the contrast of the printed letters on a low contrast
acuity chart, the usefulness and the effectiveness of this chart as a diagnostic aid may be
affected.

Given all these considerations, the general goal of this paper is to examine the interplay of
letter contrast, viewing eccentricity and letter spacing on acuity measurement. Specifically,
the goals are: (1) to quantify the nominal critical spacing for high contrast optotypes in
the periphery, (2) to evaluate how the nominal critical spacing changes with contrast in the
periphery, and (3) to determine the critical contrast for acuity measurement in the fovea and
periphery in the presence of crowding.

3.3.3 Methods

3.3.3.1 Stimulus Characteristics

Acuity was measured using Tumbling E optotypes adhering to the recommended Sloan di-
mensions (Sloan [1959]; NAS-NRC Committee on Vision [1980]). The limbs (bars) and gaps
of each character were one-fifth of the overall optotype size, which had equal width and
height. For testing flanked acuity, four additional Tumbling Es appeared, located above,
below, and to the left and right of the target letter. The orientation of the target and each
of the four Tumbling E flankers (when present) was completely random, with the limbs of
each letter pointing to the left, right, up, or down. The edge-to-edge separation between
the target and each of the flankers was specified as a multiple of the size of one limb of
the “E”, occupying 1, 2, 4, 5, 10, or 20 bar widths. Eight different levels of contrast were
evaluated: -2.5%, -3.4%, -6.7%, -12.5%, -22%, -44%, -70%, and -99% Weber contrast. Weber
contrast is defined as (L-Lb)/Lb, where L indicates the luminance of the foreground opto-
types and Lb denotes the luminance of the background. The contrast of the flankers was
always the same as that of the target. The stimuli appeared in the fovea or one of three
eccentricities in the lower visual field: 3◦, 5◦, or 10◦. The stimuli were presented for 150 ms,
a duration short enough to avoid voluntary saccadic eye movements to the stimulus once
subjects fixated on the fixation target. As soon as the subjects responded the next stimulus
appeared. Figure 3.15 presents a cartoon schematic showing the possible stimuli used in the
experiment.

3.3.3.2 Testing conditions

Testing took place in a dim room with less than 1 cd/m2 of ambient light. A 19’ NEC Ac-
cusync 120 CRT monitor at a resolution of 1280x1024 pixels was used. The luminance of the
white background displayed on the monitor was 75 cd/m2. Luminance measurements were
performed using a Minolta LS100 photometer. Subjects viewed the stimuli binocularly with
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Figure 3.15: Stimulus used in this experiment.

their habitual correction. Distance from the monitor depended on the retinal eccentricity
being tested. For the foveal condition, subjects were seated 2.4m from the monitor; for the
3◦ condition, at 1.8m; and for the remaining conditions (5◦ and 10◦), 40cm from the monitor.
At the farthest viewing distance (2.4m), one pixel on the monitor subtended 0.43 minutes of
arc. For the eccentric conditions, a cross (which was present throughout a trial), served as
the fixation target and the target E (flanked or unflanked) appeared at the appropriate ec-
centricity below the cross. The size of the fixation cross was 3.1mm, so the angular subtense
of the cross varied with viewing distance, having a size of approximately 27’ at 40cm and 6’
at 1.8m. To avoid masking effects, the fixation cross disappeared when foveal targets were
displayed. Stimuli were rendered and displayed with custom software written in the Python
programming language using the PsychoPy psychophysics library (Peirce [2008]).
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Table 3.12: Subject demographics

Subject Gender Age Best corrected visual acuity Refractive errors
S1 M 20 OD: 20/20 OD: -5.57

OS: 20/20 OS: -4.75
S2 M 27 OD: 20/16 OD: -11.25 -0.50 × 003

OS: 20/16 OS: -11.75 -0.25 × 124
S3 F 22 OD: 20/20 OD: -4.00 -0.75 × 165

OS: 20/16 OS: -3.75 -0.75 × 170
S4 F 19 OD: 20/12.6 OD:-2.00

OS: 20/12.6 OS:-2.00
S4 F 20 OD: 20/20 OD: -2.50 -0.50 × 176

OS: 20/20 OS: -3.00 -0.50 × 013

3.3.3.3 Subjects

Five subjects participated in this study. Table 3.12 lists the demographic information of
the subjects. Written informed consent was obtained from each subject after the procedures
of the experiment were explained, and before the commencement of data collection. The
experimental protocol was approved by the Institutional Review Board at the University of
California, Berkeley, and conformed to the Declaration of Helsinki.

3.3.3.4 Psychophysical Procedure

Threshold letter size (specified as the minimum angle of resolution, MAR, in units of minutes
of arc) for each condition was determined using an adaptive 3-down, 1-up staircase procedure,
which identified the threshold for 79% correct performance. For each staircase run, the
target Tumbling E, with or without its four flankers, initially appeared at a size significantly
above threshold for the selected testing eccentricity: 2◦ letters at the fovea, 2.5◦ letters at
3◦ eccentricity, 3◦ letters at 5◦ eccentricity, and 4◦ letters at 10◦ eccentricity. The stimulus
size was reduced after three consecutive correct trials; and increased after a single incorrect
trial. The amount by which the stimulus size changed after each of these reversals became
progressively smaller, using the following sequence: three reversals of one log unit, four
reversals of 0.2 log units, and five reversals of 0.1 log units. A single staircase ended when all
12 reversals were completed and took on average 78 trials, with 95% of the staircases taking
between 50 and 200 trials. There was no systematic effect of retinal eccentricity, stimulus
contrast, or letter spacing on the number of trials it took to estimate a threshold. The
threshold was determined as the average of the sizes at which the reversals occurred, with
the exclusion of the first two reversals, which were not used in the threshold calculation.
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3.3.3.5 Testing Sequence

Every condition (eccentricity, contrast, spacing) was tested at least twice, with the order
of execution determined as follows. For each subject, a random order of eccentricities was
constructed from the set of eight eccentricities (four eccentricities, each appearing twice). To
test an eccentricity, a random ordering of contrasts was generated. For each contrast, the
order of flanker spacings (including unflanked) was randomized. For each of these conditions
(eccentricity, contrast, and spacing), the software first displayed the parameters (eccentricity,
contrast, and spacing) about to be tested, then commenced the staircase procedure defined
in “Psychophysical Procedure” to determine the threshold. Testing all conditions for one
eccentricity (all contrasts and all spacings) took an hour to an hour and a half. This ran-
domization of the sequence of trials was performed in order to minimize the effects of fatigue
and practice.

3.3.3.6 Data Analysis: Fitting Individual Acuity vs. Letter Spacing

To evaluate how acuity is affected by the spacing between adjacent letters, and to derive the
critical spacing for the different contrasts and eccentricities, thresholds are first analyzed as
a function of letter spacing. The primary method of modeling the data is to adopt the for-
mulation used by previous studies (Song [2009]; Song, Levi, and Pelli [2014]; Pelli, Song, and
Levi [2011]; Chung [2014]). This method has been used to model crowded acuity in the fovea
and periphery of normal subjects, amblyopes and people with age-related macular degener-
ation. In this model, data for a given condition are fit using a two line function, with acuity
plotted as threshold size against nominal spacing, on logarithmic axes. Figure 3.16 shows an
example of this model with subject data collected at 3◦ eccentricity in the lower visual field
and high contrast (-99%) stimuli. When flankers are far from the target (or absent), acuity
is unaffected by the spacing of the flankers, and the y-values form a horizontal line. When
the flankers are in close proximity to the target, acuity is affected by spacing. These data
are well described by a line with a slope of negative one, which implies a complete trade-off
between acuity and spacing. This complete trade-off between acuity and spacing is a direct
consequence of the fixed angular size of the crowding zone at any given eccentricity (Pelli,
Palomares, and Majaj [2004]). The intersection of the two lines is the critical spacing, by def-
inition. The basis of this formulation is described in further detail in Section 3.3.8. Although
the fit is performed as described above, in this paper results are presented with the units of
edge to edge letter spacing (in bar widths) on the abscissa, and MAR (in minutes) on the
ordinate to better relate our findings to clinical practice. The effectiveness of this model in
fitting the present data is demonstrated in the Results section. While more complex formula-
tions have been used to fit data like ours, such as the rectangular parabola (Gurnsey, Roddy,
and Chanab [2011]), the simplicity of the two-line fit, as well as the clear interpretation of its
parameters, justify its use. With this fit, the dependent variable increases monotonically as
flankers approach the target. Some researchers have identified a facilitation effect, whereby
flankers very near the target may actually aid its identification (Flom, Weymouth, and Kah-
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Figure 3.16: Canonical two-line fit. Subject S1’s data with high-contrast stimuli at 3◦ in
the lower visual field demonstrating the two-line fit of acuity versus letter spacing. The
datum plotted at a letter spacing marked with “∞” represents unflanked acuity. The critical
spacing is where the two lines intersect. Error bars indicate the standard deviation between
the thresholds from the subjects two separate staircase runs. To the right of the critical
spacing acuity is flat, implying that it is unaffected by crowding. To the left of the critical
spacing, adjacent characters are within the “crowding zone,” and thus, crowding is evident.
The slope in this portion is constrained to -1.
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neman [1963]; Siderov, Waugh, and Bedell [2013]; Takahashi [1968]; Danilova and Bondarko
[2007]), though with percent correct as the dependent variable. It is not clear that the same
effect would be apparent when acuity is measured, nor has there been evidence of this effect
in the periphery.

3.3.3.7 Data Analysis: Fitting Individual Acuity vs. Contrast Data

To evaluate how acuity is affected by stimulus contrast, the critical contrast for acuity
measurements for the different eccentricities and letter spacings is derived. To do so, acuity
is plotted as a function of contrast on log-log axes, for each eccentricity and letter spacing.
The acuity versus contrast function can also be described by a two-line fit, but unlike the
acuity versus spacing fit, the slope of the decreasing portion of the curve is allowed to vary,
since there is neither empirical or theoretical justification to constrain it. The critical contrast
is defined as the contrast at which threshold begins to worsen from its optimal value, which
is achieved at full contrast. This critical contrast is the value on the abscissa where the two
lines intersect. A similar fit has been used previously by O’Brien et al. (O’Brien, Mansfield,
and Legge [2000]) and Chung and Tjan (Chung and Tjan [2009]), but with reading speed as
the ordinate.

3.3.3.8 Curve Fitting

Curve fitting was accomplished using the scipy.opt optimization library in Python. Summed
square error was minimized using the L-BFGS algorithm, an iterative fitting procedure
capable of non-linear fitting. When the dependent variable was an acuity measurement,
errors were minimized on a log axis, as suggested by Westheimer (Westheimer [1979a]).

3.3.4 Results

3.3.4.1 Acuity vs. letter spacing

First, threshold size is analyzed as a function of nominal letter spacing. Figure 3.17 shows
the individual subject data (S1-S5, separate rows) for all four eccentricities (different curves
in each panel) at each stimulus contrast (each contrast in a column). As expected, acuity
worsens as eccentricity increases, with the lowest curve in each panel (smallest threshold)
representing data obtained at the fovea, and each curve above corresponding to data obtained
at the more eccentric target locations. Acuity also worsens as contrast decreases (an upward
shift in the family of four curves with the columns going from left to right). The unflanked
foveal acuity measured at the highest contrast corresponds to a threshold of approximately
one minute of arc for four of the subjects (1.08, 1.09, 1.0, and 0.92 min, respectively, for
S1-S4), with much poorer acuity for S5 (3.19 min), who had higher overall variability. We
suspect that location uncertainty for the foveal targets and short stimulus duration (150
ms) made the task difficult for our observers (Baron and Westheimer [1973]), which could
account for why the high contrast unflanked foveal acuity was not better.



CHAPTER 3. CROWDING 87

1

2.5

5

10

20

//

-99%

//

-70%

//

-40%

//

-22%

//

-12.5%

//

-6.7%

//

-3.4%

//

S1

-2.5%

1

2.5

5

10

20

// // // // // // // //

S2

1

2.5

5

10

20

M
A

R
 (m

in
)

// // // // // // // //

S3

1

2.5

5

10

20

// // // // // // // //

S4

1 5 10 20 ∞
1

2.5

5

10

20

//
1 5 10 20 ∞

//
1 5 10 20 ∞

Edge-to-edge letter spacing (bar widths)

//
1 5 10 20 ∞

//
1 5 10 20 ∞

//
1 5 10 20 ∞

//
1 5 10 20 ∞

//
1 5 10 20 ∞

//

S5

Figure 3.17: Complete individual subject data showing acuity versus letter spacing at the
four eccentricities tested (different shaded curves in each panel), at all stimulus contrasts.
Each column is a given contrast and each row is a particular subject. Error bars indicate the
standard deviation between the thresholds from the subject’s two separate staircase runs,
and the lines indicate fits. In each plot, the lowest curve comprises the foveal condition, with
each successive eccentricity (3◦, 5◦, and 10◦, respectively), stacked above.
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Table 3.13: Nominal critical spacing at high contrast (-99%), in bar widths.

Subject Fovea 3◦ 5◦ 10◦

S1 2 (0.88-3) 18 (16-20) 16 (8.4-26) 15 (9.5-30)
S2 4.7 (3.6-6.6) 15 (8.3-23) 14 (3.2-38) 27 (17-46)
S3 2.2 (0.95-3.1) 16 (4.3-43) 21 (7.5-41) 19 (15-33)
S4 3 (-0.033-4.6) 9.5 (3.6-15) 7.7 (5-9.6) 14 (9.6-17)
S5 8.2 (-0.95-35) 17 (2-39) 6.9 (3.4-51) 13 (7.9-20)

AVG 4.4+/-3 15+/-3 14+/-5.3 19+/-5.9

Mean of 1000 Monte Carlo simulations, with 95% confidence intervals in parentheses. Last
row, in bold, indicates average (AVG) of the five subjects.

Table 3.14: Nominal critical spacing (bar widths) at all contrasts, mean +/- standard devi-
ation across subjects

Contrast Fovea 3◦ 5◦ 10◦

-99.0% 4.4+/-3 15+/-3 14+/-5.3 19+/-5.9
-70.0% 3.6+/-2.2 16+/-2.7 15+/-3.4 22+/-9.2
-40.0% 3.2+/-1.8 14+/-4.5 12+/-3.9 22+/-5.1
-22.0% 4+/-3.7 13+/-4 12+/-3.3 15+/-5.7
-12.5% 2.7+/-1.7 12+/-3.5 11+/-3.6 15+/-6.4
-6.7% 2+/-0.76 9.9+/-2.9 8.9+/-3.6 9.6+/-2.7
-3.4% 2.8+/-1.7 6.2+/-1.5 7.4+/-3.1 8.4+/-2.5
-2.5% 1.9+/-0.53 4.2+/-1.6 4.4+/-2 4.5+/-1.6

To model the data, we used the constrained two-line fit as described above. R2 statistics
for the fit to the peripheral data averaged 0.85 (+/-0.17) across all subjects and contrasts,
implying that the two-line fit provides an excellent description of the peripheral data. How-
ever, in the fovea, the R2 values for the fit are typically small numbers, yielding an average of
0.33 (+/-0.3) across subjects and contrasts. This is due to the fact that the foveal crowding
functions are relatively unaffected by the flankers for the range of spacings and contrasts
tested, which is evident in Figure 3.17 by the flatness of the foveal curves. The two-line fit
yields very small nominal critical spacings, meaning that a straight line would fit the data
almost as well as the model, resulting in a low R2 despite a small sum of squared error.
Regardless, it is parsimonious to have a single model that can describe the data accurately
across all conditions.

The two-line fit summarizes the acuity at each condition with two parameters: the un-
crowded acuity (the ordinate corresponding to the horizontal portion of the curve) and the
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Table 3.15: Pairwise significance testing of critical spacing as a function of stimulus contrast
values from Table 3.14.

-2.5% -3.4% -6.7% -12.5% -22.0% -40.0% -70.0% -99.0%
-2.5% n.s. 0.002 h.s. h.s. h.s. h.s. h.s.
-3.4% n.s. 0.04 0.003 h.s. h.s. h.s.
-6.7% n.s. n.s. 0.01 0.002 h.s.
-12.5% n.s. n.s. n.s. n.s.
-22.0% n.s. n.s. n.s.
-40.0% n.s. n.s.
-70.0% n.s.

Adjusted p values are from Tukey HSD test. Those in bold are significant at 0.05 level.
h.s. = highly significant (adj. p<0.001) n.s. = not significant at 0.05 level

nominal critical spacing (the abscissa corresponding to the intersection of the two lines).
Table 3.13 lists the nominal critical spacings at -99% contrast for each subject as a function
of eccentricity. To determine confidence intervals, 1000 individual Monte Carlo simulations
based on the subject data were generated, and the model was fit for each simulation (King-
dom and Prins [2009]). The reported statistics indicate the mean of the fitted parameter
values and the 95% confidence interval range. Table 3.14 shows fits at all contrasts that
were tested. The foveal nominal critical spacing (averaged 4.4 bar widths) is generally much
smaller than the peripheral values (15 - 20 bar widths), with the three peripheral values
being very similar to each other. The average value of the foveal critical spacing (4.4 bar
widths) agrees with previous reports (Flom, Weymouth, and Kahneman [1963]). The novel
contribution of this study is the finding that the nominal critical spacing in the periphery,
known to be greater than 5 bar widths (Flom [1991]; Jacobs [1979]), is 15-20 bar widths at
the eccentricities tested.

At -99% contrast, a repeated-measures ANOVA (using the software package R (Ihaka
and Gentleman [1996])) revealed a significant effect of eccentricity on critical spacing (F3,18

= 7.753, p = 0.002). Posthoc pair-wise comparison using the Tukey HSD test showed that
the fovea was different from the nonfoveal eccentricities (padj < 0.03 for the fovea versus each
of the three eccentricities), while the non-foveal eccentricities were not different from each
other (padj>0.5). As shown in Table 3.14, lower contrasts yielded smaller critical spacings
at all eccentricities, with a larger decrease in the periphery. In the fovea, the low contrast
critical spacing was half of the high contrast critical spacing, while at 10◦ eccentricity the
low contrast critical spacing was a quarter of the high contrast critical spacing.

A repeated-measures ANOVA showed that contrast indeed had an effect on critical spac-
ing (F7,128 = 18.351, p<0.001), although the interaction between contrast and eccentricity
was not significant (F21,128=1.326, p=0.171). Furthermore, post-hoc pairwise comparison
using the Tukey HSD test revealed which contrasts were significantly different from each
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Figure 3.18: Critical contrasts for each eccentricity at the various letter spacings, averaged
over all subjects. Error bars represent the standard deviation between the five subjects on
the given condition.

other. Adjusted p-values from these comparisons are given in Table 3.15. In general, at
12.5% contrast and above, none of the corresponding critical spacings were significantly
different from each other. Particularly at the lowest contrast (-2.5%), the nominal critical
spacing was markedly reduced from the high contrast critical spacing, decreasing to less than
5 bar widths (see Table 3.14).

3.3.4.2 Acuity vs. contrast

In addition to the effect of letter spacing at each eccentricity and contrast level, the effect
of contrast on acuity for a given condition (eccentricity and letter spacing) was analyzed,
using the unconstrained two-line fit described earlier. The main parameter of interest in this
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Table 3.16: Critical contrast (absolute value %) at all letter spacings, mean +/- standard
deviation across subjects.

Spacing (bar widths) Fovea 3 deg 5 deg 10 deg
1 22+/-6.9 18+/-5.3 12+/-9.4 13+/-7.7
2 20+/-6.7 13+/-10 14+/-8.3 17+/-4.7
4 24+/-3.3 21+/-7.5 9.3+/-3.8 13+/-9.3
5 28+/-2.5 23+/-7.6 21+/-9.7 19+/-8.5
10 27+/-3.4 17+/-6.6 13+/-5.6 19+/-7.8
20 24+/-4.9 19+/-7 19+/-7.4 19+/-7.3
Unflanked 26+/-5.5 20+/-5.2 17+/-6 18+/-5.6
AVG 24+/-5.6 19+/-7.7 15+/-8.3 17+/-7.9

analysis is the critical contrast, the contrast value at which acuity begins to worsen with
decreasing contrast. Figure 3.18 shows a summary of the critical contrasts at each eccen-
tricity for all letter spacings, averaged across subjects, and Table 3.16 lists all the critical
contrasts, averaged across subjects. Critical contrasts were on average lower in the periphery
(14.5% (flanked) to 18% (unflanked)) than at the fovea (22% (flanked) to 26% (unflanked)),
with similar values at the three non-foveal eccentricities. Repeated-measures ANOVA with
both eccentricity and spacing as factors revealed a significant effect of eccentricity on critical
contrast (F3,112) = 9.635, p<0.001), a nearly significant effect of spacing (F6,112) = 2.128,
p=0.056), and no interaction (F18,112) = 0.472, p=0.97). Post-hoc pair-wise comparison
using the Tukey HSD test showed that the fovea was different from the non-foveal eccen-
tricities (padj<0.01 for the fovea versus each of the three eccentricities), while the peripheral
eccentricities were not different from each other (padj>0.24).

3.3.5 Discussion

In his classic 1991 review of contour interaction and crowding (Flom [1991]), Flom noted
that the critical spacing value of “5 gap widths” in the fovea had not yet been extended
to the retinal periphery. This extent has now been quantified as approximately 15-20 bar
widths between 3 and 10 degrees eccentricity, as shown by the black points in Figure 3.19.
The critical spacing is relatively invariant to changes in retinal location over this range of
eccentricities. For comparison, the horizontal dotted line in Figure 3.19 indicates the charac-
ter spacing on a modern chart designed with the principles to avoid foveal crowding (Bailey
[2012]). Note that the characters on such a chart are outside the critical spacing at the fovea
(the dotted line is above the critical spacing we measured), meaning acuity is unaffected by
crowding for this letter spacing. Outside the fovea, however, because the critical spacing is
much larger, adjacent characters on such a chart are within the critical spacing. Thus, non-
foveal acuity measurements using a traditional letter chart may not be optimal as they are
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Figure 3.19: Critical spacing plotted as a function of eccentricity for contrasts of -99%
(black dots), -12.5% (gray dots), and -2.5% (white dots). Each point represents the average
of the five subjects, and error bars indicate the standard deviation. The dotted line shows
the spacing of standard chart designs following Bailey-Lovie guidelines, which have 1 letter
width (5 bar widths) between each character. Values that fall below the dotted line indicate
acuity measurements not limited by crowding based on the letter spacing of a standard letter
chart; acuity measurements that fall above the line will be limited by crowding with the letter
spacing recommended by Bailey-Lovie chart design. We chose to show the critical spacing
for -12.5% contrast to illustrate that for the commercially available low contrast versions of
the Bailey-Lovie or ETDRS charts, which have a contrast close to -12.5%, the letter spacing
is smaller than the critical spacing in the periphery. Hence, acuity measured using these low
contrast charts (as well as high contrast charts) for patients who cannot view foveally may
underestimate the peripheral acuity.
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Figure 3.20: Schematic demonstration of a modified Bailey-Lovie/ETDRS chart with 3 letter
widths (15 bar widths) critical spacing. Every other line was removed, and every other
character of the remaining lines was removed.

limited by crowding. Figure 3.20 illustrates how a traditional letter chart (left side) could be
modified to yield optimal acuity for peripheral viewing up to about 10 degrees (right side).
Alternately, optotypes may be presented in isolation, if isolated letter cards are available.
However, a clinician may be interested in assessing additional information with a letter chart,
such as the search ability of patients. This is especially important for patients with central
vision loss who often lose their place during reading of text or when viewing letters on an
acuity chart. Even if isolated letters are used, it is important to know how much whitespace
is necessary to surround a single letter, since any edges in the visual environment may cause
lateral interference. Finally, if there is no alternative to using a traditional letter chart to
assess peripheral acuity, in Section 3.3.8 we describe a simple way to predict the optimal
(isolated letter) acuity based on the crowded acuity. This is possible for two reasons: 1)
the crowded thresholds fall on the line with a slope of negative one as described earlier, and
2) the nominal critical spacing is roughly invariant to retinal location within 3-10 degrees
eccentricity.

Since the first groundbreaking studies of Flom et al. (Flom, Weymouth, and Kahneman
[1963]; Flom, Heath, and Takahashi [1963]), there have been many explorations of crowding,
but all with different aims from the present study. For high contrast targets in the periphery,
critical spacing has primarily been analyzed in terms of absolute angular distance (Chung,
Levi, and Legge [2001]; Jacobs [1979]; Bouma [1970]; Toet and Levi [1992]; Pelli, Palomares,
and Majaj [2004]; Gurnsey, Roddy, and Chanab [2011]; Tripathy and Cavanagh [2002];
Strasburger, Harvey, and Rentschler [1991]; Latham and Whitaker [1996]). The now well-
established finding that absolute critical spacing changes linearly with eccentricity, and is
independent of stimulus variables such as size is useful to researchers, but is of less interest
when considering performance on letter charts, for which the character-to-character spacing
is fixed physically, and the whole chart scales with distance. Furthermore, previous stud-
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ies have measured thresholds in various ways that introduce confounding factors. First,
some studies have measured threshold as a reduction in percent correct with stimuli of fixed
size (Bouma [1970]; Tripathy and Cavanagh [2002]; Hess et al. [2000]), which may not directly
translate to results in a threshold acuity paradigm where target and flankers are size-scaled
together. Others used threshold contrast for identifying fixed-size stimuli (Chung, Levi,
and Legge [2001]; Pelli, Palomares, and Majaj [2004]; Strasburger, Harvey, and Rentschler
[1991]; Hariharan, Levi, and Klein [2005]; Levi, Hariharan, and Klein [2002]; Levi, Klein, and
Hariharan [2002]) which is potentially a confound for crowding in general (Petrov, Popple,
and McKee [2007]), and definitely cannot be utilized if evaluating the effect of contrast on
critical spacing. There are several studies that have considered high-contrast, peripheral
crowding with flanker spacing measured in terms of bar-widths at resolution threshold (Ja-
cobs [1979]; Leat, Li, and Epp [1999]; Gurnsey, Roddy, and Chanab [2011]; Latham and
Whitaker [1996]). Jacobs (Jacobs [1979]) and Leat, et al. (Leat, Li, and Epp [1999]) did
measure threshold acuity and showed that the critical spacing for crowding in the periphery
exceeded five bar widths and was potentially much greater, but the maximal spatial ex-
tent was not identified. Latham and Whitaker (Latham and Whitaker [1996]) and Gurnsey
et al. (Gurnsey, Roddy, and Chanab [2011]), scaled target, flankers, and spacing as in the
present study, and fit their data with complex mathematical functions, but did not determine
the critical spacing in terms of bar widths that would be useful to peripheral letter chart
design, nor did they examine the effects of contrast. Lastly, while Tripathy et al. (Tripathy
and Cavanagh [2002]), did measure the angular critical spacing in the periphery using low
contrast letters, they utilized contrast to equate the effective visibility of stimuli of various
sizes, whereas we systematically varied contrast and measured acuity.

We have shown that in the periphery, the nominal critical spacing is smaller when acuity
was assessed using low contrast letters than with high contrast letters. The weaker effect of
crowding on acuity measurement with low contrast letters has previously been shown in the
fovea (Kothe and Regan [1990]; Bailey et al. [1993]; Giaschi et al. [1993]; Pascal and Abadi
[1995]; Simmers et al. [1999]; Siderov, Waugh, and Bedell [2013]), and here we report a similar
effect in the periphery. The effect of crowding on acuity is even weaker in the periphery, where
the low contrast critical spacing is a third of the high contrast critical spacing for the lowest
contrast (-2.5%), reducing from 15-20 bar widths down to 4-5 bar widths (see Table 3.14).
At this low contrast (-2.5%), nominal edge-to-edge critical spacing in the periphery was
as small as the extent of high contrast letters in the periphery (4.4 bar widths). Besides
determining the critical spacing required for optimal acuity measurement using letter charts
with multiple letters, we were also interested in determining the critical contrast for acuity
measurement that would make the assessment of low contrast acuity useful. At the fovea,
acuity is independent of contrast above a letter contrast of approximately 24%. In the
periphery, this critical contrast is about 17%. These findings imply that if using a letter chart
printed in a letter contrast of, for example, 20%, there will be little difference in peripheral
acuity between this letter chart and the high contrast version of the chart, whereas the
foveal acuity (the condition which the chart may have been designed for), would exhibit a
measurable difference in acuity. In other words, the additional information that could be
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obtained by measuring low contrast acuities will be lost. Low contrast acuity has been shown
to be more sensitive in picking up diseases (Regan and Neima [1984]; Woods, Tregear, and
Mitchell [1998]; Kleiner et al. [1988]; Regan and Neima [1983]; Haegerstrom-Portnoy [2005]),
but to benefit from the measurement, the contrast should be low enough to affect acuity,
particularly for the specific condition in which it is utilized, such as in the periphery. Here
we show that the letters should be printed at a (Weber) contrast of 17% or lower in order
for the chart to be useful in helping the diagnosis of diseases or to evaluate how contrast
affects acuity. In sum, greater care should be used when employing tests based on contrast
for measuring acuity in the periphery.

3.3.6 Conclusions

This study identified the nominal critical spacing for high contrast letters in the periphery,
finding a critical spacing of approximately 15-20 bar widths from 3 to 10 degrees eccentricity
in the lower vision field. This translates to a required increase in letter spacing from a one
character gap (5 bars widths) to a 3-4 character gap (15-20 bars widths) if a chart is intended
for use in the periphery such that the acuity measurement will not be affected by crowding.
Thus modern letter charts, designed to avoid the effects of high contrast foveal crowding,
will exhibit effects of crowding when used in the periphery. Two solutions to this problem
were offered: the reduction in acuity due to crowding can be predicted mathematically,
or optotypes should be given greater isolation when charts are used peripherally, such as
illustrated in the right panel of Figure 3.20.

Decrease in contrast leads to reduced nominal critical spacing (less influence of crowding)
for a wide range of contrasts and eccentricities, with a greater reduction in the periphery than
in the fovea. Low contrast charts used in the fovea will yield acuity measurements unaffected
by crowding, as noted by numerous previous reports. In the periphery, the decrease in critical
spacing is more marked (even less crowding), but the low contrast peripheral critical spacing
may still exhibit more crowding than the 5 bar width spacing of traditional letter charts.
The finding that there is a small (but significant) difference between the critical contrast in
the fovea versus the periphery implies that care should be taken when comparing contrast-
dependent effects based on peripheral acuity measurements.

3.3.7 Flom vs. Bouma, quantifying the critical spacing of
crowding.

The “critical spacing” of crowding (maximum distance over which flankers interfere with
recognition of a target) was first quantified in the 1960s by Flom, et al. (1963) (Flom,
Weymouth, and Kahneman [1963]) in the fovea with small high contrast Landolt Cs (at
resolution thresholds: 5 min letters for normal observers). A crucial result was that the
maximum spatial extent of the foveal zone of interference scaled with the MAR of the
subjects, including amblyopic eyes, which have a much larger MAR than normal eyes. Others
have reproduced their finding that foveal crowding extends no further than an edge-to-edge
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Figure 3.21: Computation of nominal critical spacing from absolute measures. Top panel:
dotted line shows threshold MAR: 1/5 the threshold letter size. Dotted line shows absolute
edge-to-edge critical spacing. Bottom panel shows nominal edge-to-edge critical spacing.



CHAPTER 3. CROWDING 97

spacing equal to 1× the size of the target (or 5× the gap/bar width). Levi, et al. (Levi,
Hariharan, and Klein [2002]) have shown this size dependence with a wide range of foveal
target sizes (4’ to greater than 100’), measured as the distance at which contrast thresholds
increase instead of percent correct or MAR.

Peripheral studies, on the other hand, typically measure the spatial extent of crowding in
terms of the angular separation between adjacent optotypes, beginning with Bouma (Bouma
[1970]), who estimated crowding to extend approximately 0.5 times the eccentricity (in de-
grees). The suitability of this method is bolstered by the finding that the spatial extent of
peripheral crowding (unlike foveal) is independent of the target size over a large range (Pelli,
Palomares, and Majaj [2004]; Tripathy and Cavanagh [2002]; Levi, Hariharan, and Klein
[2002]).

Information about the crowding zone in terms of bar widths at the acuity limit is impor-
tant in order to identify limitations of peripheral acuity measurements using letter charts.
Researchers who have evaluated peripheral crowding in terms of bar widths have found that
peripheral crowding extends farther than 5 bar widths (Jacobs [1979]), the spacing of most
commercially available charts, and potentially much farther. As we demonstrated earlier, we
found in our study that peripheral crowding extends to 15–20 bar widths.

These two ways to specify the critical spacing are not mutually exclusive, and extending
Flom’s analysis into the periphery is possible. MAR for isolated letters increases linearly
with eccentricity (known since Weymouth, 1958), and the extent of crowding also increases
linearly with eccentricity, following Bouma’s “law” (Bouma [1970]). The Bouma fraction
determines the angular spatial extent of crowding, as a multiple of the eccentricity. It may
depend on the task (Pelli, Palomares, and Majaj [2004]), typically taking on values from
0.15 to 0.5. The slope of isolated letter MAR vs. eccentricity can vary from 0.15 to 0.8
(measured in minutes; cf. Jacobs ([1979])).

Fundamentally, the nominal edge to edge critical spacing is determined by dividing the
angular critical spacing (in min) by the isolated MAR (in min) at each eccentricity, yielding
the number of bar widths for the crowding zone at the acuity limit. Figure 3.21 illustrates
this procedure on the data from our 5 subjects. The top panel shows the average MAR
and the average angular critical spacing (determined using the two line fit described in the
previous section). The bottom panel shows the curve that results from dividing the two fitted
curves. The points and error bars show the empirical nominal critical spacings determined
by averaging the nominal critical spacing of the 5 subjects at each eccentricity.

The parametric line fit for isolated letter MAR is (0.57*E+1.28 min) and for critical spac-
ing is (14.4*E+4.13 min). The corresponding E2 (eccentricity where the foveal value doubles)
measures are thus: E2 (MAR)=2.27, E2 (crit. spac.)=0.29, which are comparable with the
literature (Latham and Whitaker [1996]; Strasburger, Rentschler, and Jüttner [2011]). The
Bouma fraction we determined from our subjects was in the range 0.2-0.3, matching the
literature (Pelli, Palomares, and Majaj [2004]).
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Figure 3.22: Crowded acuity as a function of center-to-center nominal spacing, illustrating
-1 slope. See text for usage in estimating crowded acuity.

3.3.8 Two line fit justification, and prediction of crowded acuity.

This document summarizes (and motivates) the constrained two line fit of acuity versus
center-to-center nominal character spacing used throughout the study. The fit originates
from Denis Pelli and colleagues (Song, Levi, and Pelli [2014]; Pelli, Song, and Levi [2011];
Song [2009]) and has been used to model crowded acuity in the periphery and fovea of normal
observers, amblyopes, and subjects with AMD (Chung [2014]).

The fit (shown in the Figure 3.22) has two main features. First, a horizontal portion
outside the critical spacing, where flankers do not affect recognition of the target, and thus
the threshold is a constant function, limited only by isolated acuity for the given condition.
Second, a portion where the nearby flankers “crowd” the target, causing acuity to worsen.
The crowded region can be represented by a line with a slope of -1. Here size threshold is
inversely proportional to letter spacing: smaller spacings yield greater thresholds. The fit
for our data is good, especially in the periphery, where the average R2 is 0.85. Furthermore,
there is a clear intuitive motivation for the relationship, which is described below.

The success of this model in fitting the data allows prediction of crowded acuity. Since
the log spatial extent and the log magnitude of crowding-limited acuity (size threshold) are
inversely proportional, knowledge of either can be used to predict performance on any part
of the curve. For example, consider the dotted and dashed lines shown in Figure 3.22, which
will be used to demonstrate how to estimate flanked acuity. First note that the abscissa
employs a measure of spacing that is more commonly used: the spacing is given in center-
to-center terms, and it is measured in units of multiples of whole character widths, rather
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than bar-widths. The dashed lines indicates the critical spacing and unflanked MAR for
this condition, at 10 degrees eccentricity. The vertical line indicates the critical center-
to-center spacing (in character widths), here approximately 4×, which corresponds to just
under 15 bar widths (edge-to-edge). The upper axis shows how each letter spacing relates
to this critical spacing (in log units). For example, ∼-0.3 log units halves the spacing:
going from 4× to 2×. The horizontal dashed line shows the isolated MAR. The dotted
lines demonstrate the consequence of using a standard letter chart spacing (one with a 1
letter (5 bar widths) edge-to-edge separation) under these conditions. First, the vertical line
shows that at this center-to-center spacing (2× letter width), the relative spacing is 0.28 log
units [log10(4)-log10(2)] closer than the critical spacing. Due to the inverse proportionality
relationship, the crowded MAR will be 100.28 (=1.9) times worse than the isolated acuity.
This is approximately ∼0.3 log units, or 3 lines worse on a logarithmic acuity chart.

In fact, since we found the nominal critical spacing to be roughly invariant over the
eccentricities we tested (3-10◦, see previous section), the elevations of MAR across subjects
were all approximately 2 times for this letter spacing throughout the periphery. This can be
compared to the results of Jacobs ([1979]), who found a threshold elevation of approximately
1.5× for his 5 bar width condition from 2-10◦ eccentricity, which is comparable to the example
condition: his flanking bars correspond to the innermost bars of Tumbling Es at 2×center-
to-center, though the differing experimental paradigms prevent exact comparison.

The success of the negative one slope has a clear intuitive meaning. The argument de-
pends fundamentally on the observation that the angular size of the crowding zone (the area
over which flankers interfere with the target) is dependent solely on the eccentricity, being
invariant to the size of the characters and other stimulus manipulations. The dependence
on eccentricity has strong support dating back to Bouma ([1970]), and the independence
on stimulus conditions (including size) also has some evidence, especially in the periph-
ery (Pelli, Palomares, and Majaj [2004]; Levi, Hariharan, and Klein [2002]; Tripathy and
Cavanagh [2002]). In Figure 3.23, the crowding zone is represented by the dashed ellipses.
The elliptical shape has been identified previously (Toet and Levi [1992]). The basic idea is
that when flankers are within the same ellipse as the target, features from the flankers will
be “integrated” with the target and impair its correct identification. Each row represents a
different letter size. The variable of interest is the spacing that will cause the two flanking
characters to fall outside of the crowding zone. Put another way, at what letter spacing
(which depends on the character size) is the critical spacing for crowding achieved? The
schematic figure depicts the exact letter spacing at which the flanking optotypes are at the
critical spacing for each letter size. Note the center-to-center separation (in letters) and the
letter size (in arbitrary units) indicated beside each row. Because of the trade-off between
size and spacing, the critical separation and the letter size have a constant product of “8,”
which is the horizontal radius of the crowding zone oval in this cartoon. So, larger letters
permit a smaller spacing whereby flankers are beyond the critical spacing of interference,
while smaller letters need to be farther away (in terms of multiples of letters). This exact
inverse proportionality motivates the use of the -1 slope to fit the data, which (as stated),
also has empirical support from data. The efficacy of this construction dictates the use of
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Figure 3.23: Schematic of fixed critical spacing with size-varying stimuli.

center-to-center spacing instead of edge-to-edge spacing, although conversion after fitting is
possible, as was described previously.
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Figure 3.24: Acuity as a function of contrast, relative to high-contrast acuity. Colored dots
and lines are empirical data and fits, respectively, from the present study. Stars are individual
data and dashed line is fit from Ludvigh ([1941]).

3.3.9 A quantitative model of contrast-dependent crowded
acuity across the visual field

Using the results of this experiment, it is possible to formalize a quantitative model of
crowded acuity across the visual field at varying stimulus contrasts.

3.3.9.1 Baseline: foveal contrast-varying acuity

First, acuity in the absence of crowding can be specified as a baseline. What is the proper
formulation for contrast-dependent acuity? One previous experiment which directly ad-
dressed this question is the classic paper of Ludvigh ([1941]). In this, Ludvigh modeled the
relative acuity, or acuity normalized to a subject’s best (high-contrast) acuity. There are
some nuances with using his published data tables. Ludvigh measured acuities as Snellen
denominators, and computed the arithmetic average of the values of three subjects, and
the threshold he used corresponded to 60% correct identification. Despite these differences,
Ludvigh’s data are in good agreement with our foveal results, as the black symbols and
lines in Figure 3.24 indicate. His fit, shown by the dotted line in Figure 3.24, comprised
the function y = (x − 0.050)0.162, yielding a relative acuity y for a contrast proportion x.
There is no justification given for this equation, so a safe assumption is that it simply pre-
sented the best mathematical fit. The shape of the function (particularly at low contrasts)
is determined by just the two moderately low contrast points (5.3% and 6.8%), which would
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Figure 3.25: Refit of Legge 1987. Left panel shows data in original format and fit, with the
addition of a truncated fit, where the high-contrast data point is omitted. Right curve shows
data formatted as semilogx, with linear relative acuity on ordinate.

presumably be noisy. Furthermore, because of the form of the equation, contrasts below 0.05
(5% contrast) are undefined, which is problematic. Nevertheless, as shown by Figure 3.24,
the data is not inconsistent with our empirical results or fit. Our data, on the other hand,
consist of more points with improved coverage of the function. To fit our data, we use a
two-line (hinged) function, which could be fit by either minimizing squared error or maximiz-
ing likelihood. There was little difference in practice for the two methods on these data, so
only least-squares results are reported. For the foveal condition (black line on Figure 3.24),
below approximately 70% a straight line fit our empirical data well. All three of Ludvigh’s
subjects were slightly above the relative acuity predicted by our model at 6.8% contrast. His
other points (at 5.3%, 34.4%, and 100%) fall almost exactly on our line—the last of these
by design, of course. Note the parameters of this line as given on the legend: a two-line
function with slope 0.52 that saturates at 70% contrast. The saturation point is defined as
the “critical contrast,” abbreivated “crit. con” on the figure legend.

Another relevant result from the literature comes from the lab of Gordon Legge. Legge
et al. (Legge, Rubin, and Luebker [1987]) measured contrast thresholds using Sloan letters
and a method of limits to identify the minimum contrast for reliable (6 out of 8 correct)
identification of letters of various sizes. Instead of plotting the data with the target size on
the abscissa and contrast threshold on the ordinate, as typically done in a contrast-sensivity
(CSF) plot, they plotted log contrast on the abscissa, and the corresponding size on the
ordinate, much like Figure 3.24. Curiously, they defined contrast in terms of the Michel-
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son measure (Lmax−Lmin

Lmax+Lmin
), which is often used for gratings, instead of the Weber definition

(Lmax−Lmin

Lmax
), which is more common with letter optotypes. Their data are plotted on Fig-

ure 3.25, with the left panel a simple re-plot of their data and fit as described in their paper.
An additional line is fit, where the high contrast data point is excluded. Since this point
is the only one constraining the fit at high contrasts, its exclusion permits determining the
lower portion of a hinged-like fit. The high-contrast acuity is indicated by the horizontal
dotted line. Thus the hinge would occur where the blue and dotted lines intersect, which
is 0.3 for these data. However, since they used a Michelson contrast measure, this would
correspond to a higher Weber value (0.46), but still less than the 0.7 that we found. The
slope for the truncated fit is -0.63, much steeper than the slope of -0.5 for the full data.

To more clearly compare, the right panel transforms the data in two ways. First, the
contrast values are converted to their Weber equivalents before further computation. Second,
the ordinate is normalized to the best (high-contrast) acuity, which includes a reciprocal
operation. The blue curve fits the data as-is (including all points), and has a slope of 0.445.
The truncated curve (excluding the top point), becomes shallower, with a slope of 0.3, and
would imply a “hinge” in the wrong direction, since extending the line does not cross the
high-contrast ordinate value of 1.0 until much farther than the 1.0 contrast value. The un-
modified fit seems more reasonable on these axes. Lastly, the purple curve plots the Ludvigh
fit, which does not correspond well with either the empirical data or any of the fits.

It is also useful to place our findings in the context of typical results from other ex-
periments which focused on measuring the contrast sensitivity function (CSF). There is a
connection here that is often missed. It is well known that high-contrast acuity should cor-
respond to the high-frequency cut-off the curve on the CSF as Legge and Rubin remind
us (Legge and Rubin [1986]). As Legge and Rubin note, Virsu, Lehtio, and Rovamo ([1981])
measured a correlation of 0.84 between CSF cutoff and Snellen acuity. But, just as Legge,
Rubin, and Luebker ([1987]) plotted their data as acuity versus log contrast, there are other
results which may allow similar re-analysis. An obvious candidate is the study by Herse and
Bedell ([1989]), which reported contrast thresholds for letters and gratings under various
relevant conditions, such as at non-foveal eccentricities. We will return to their results after
a discussion of general principles governing peripheral acuity.

3.3.9.2 Acuity versus eccentricity: E2, etc.

The variation of acuity with retinal location has also been well studied, with many examples,
dating back at least to 1891 (Wertheim [1980]). The aforementioned Herse and Bedell ([1989])
is one representative example, as well as results from Jacobs ([1979]) (which summarizes
many of the previous studies), Virsu and Rovamo ([1979]); Virsu, Näsänen, and Osmoviita
([1987]), Phelps ([1984]), and many others. Expressing how thresholds vary with eccentricity
is a common operation, and has been quantified in several ways. Cortical magnification factor
(M), or its inverse (M−1), popularized by Virsu and Rovamo ([1979]), links performance in the
visual field with physiological parameters, particularly ganglion cell and cortical cell density.
“M-scaling” can be used to equalize performance across the visual field, such as increasing
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the size of letter optotypes to make them equally legible, as in the demo chart of Anstis
([1974]). Thresholds increase approximately linearly with most spatial tasks out to 20◦ or
further (Weymouth [1958]). For brevity, we will call plots that express threshold-versus-
eccentricity “TvE” plots, in parallel to the ubiquitous “TvC” (threshold-versus-contrast), or
“TvN” (threshold-versus-noise) plots. Weymouth observed that the TvE “curves” (straight
lines, actually) for different tasks had divergent slopes.

Quantification of these differences typically employs the “E2” measure, popularized by
Levi and Klein (Levi, Klein, and Aitsebaomo [1985]). One way to conceptualize E2 is that
this number reflects the eccentricity at which the foveal thresholds double. It is likewise the
location where the TvE curve crosses the X-axis (in the negative direction). Algebra shows
that these quantities are equal (except for an opposite sign), for the TvE line defined by
y=mx+b.

mx+ b = 2b (For what “x” does the foveal value double?)

mx = b

x =
b

m

mx+ b = 0 (Where does the line intersect the X-axis?)

mx = −b

x = − b

m

As shown above, mathematically, E2 is equal to b
m

, or the intercept divided by the
slope. It is therefore sensitive to the foveal value, which must be accurately measured.
A comprehensive history and usage of E2 is given in Strasburger’s exhaustive review of
peripheral vision (Strasburger, Rentschler, and Jüttner [2011]). High-contrast grating or
letter acuity, measured extensively by many clinicians and researchers, typically have an
E2 of 1.5◦ , which corresponds well with ganglion cell density (Levi, Klein, and Aitsebaomo
[1985]), a well-known result that has been confirmed with newer technologies such as adaptive
optics (Rossi and Roorda [2010]). Tasks like vernier and other hyperacuity tasks, or crowded
identification, have a smaller E2 of 0.6-0.8◦, which more closely matches the density in
cortex (Levi, Klein, and Aitsebaomo [1985]).

Strasburger’s review (Strasburger, Rentschler, and Jüttner [2011]) presents a table sum-
marizing E2 values from the literature, but unfortunately its haphazard ordering makes it
difficult to see the correspondence between task-dependent acuities as measured by different
researchers. To ameliorate this, I have created a new table of relevant E2 values in Ta-
ble 3.17, ordered by E2 magnitude. Note the large variation in E2 values, although most
values are in the range 1.2-3.0. Importantly, these values are larger than those associated
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Table 3.17: E2 values for acuity

E2 value Visual task Source, transcribed from primary reference
except where noted

0.88 Landolt C acuity Virsu 19871

0.977 Landolt C acuity (mean of 20)∗ (Weymouth [1958])
1.21 Tumbling-bars, inferior (KL)+ (Latham and Whitaker [1996])
1.275 Tumbling-E MAR w/AO (Rossi and Roorda [2010])
1.4 Critical print size @ 80% (Chung, Mansfield, and Legge [1998])
1.5 Single-letter acuity Herse and Bedell (1989)2

1.512 MAR; ave. 4 meridians Weymouth 19283

1.62 Tumbling-bars, inferior (DW)+ (Latham and Whitaker [1996])
1.790 MAR; horizontal (EC) Ludvigh 19413

1.716 MAR; horizontal (ave.) Ludvigh 19413

1.8 Landolt C acuity (Subj. M)∗ (Weymouth [1958])
1.959 MAR horizontal Fick3

2.2 Grating acuity (PA) (Levi, Klein, and Aitsebaomo [1985])
2.3 Letter acuity Anstis (1974)4

2.41 Grating acuity Harvey (1985)5

2.461 MAR temporal Wertheim (Weymouth [1958])
2.6 Grating acuity (ave.) Westheimer6

2.676 Landolt C acuity (Subj. K)∗ (Weymouth [1958])
2.7 Grating acuity Virsu 19871

3.0 Grating acuity (JM) (Levi, Klein, and Aitsebaomo [1985])

1 Referenced in (Drasdo [1991])
2 Referenced in (Chung, Mansfield, and Legge [1998])
3 Referenced in (Weymouth [1958])
4 Referenced in (Strasburger, Rentschler, and Jüttner [2011])
5 Referenced in (Herse and Bedell [1989])
6 Referenced in (Levi, Klein, and Aitsebaomo [1985])

∗: low luminance and short exposure (leading to difficulty in the task) are offered as possible
explanations for the small average number. However, the two individual subjects shown have
more reasonable values. Perhaps the method of averaging was inappropriate?
+: For both subjects, the superior visual field E2 was smaller, while the two horizontal fields
yielded ∼33% larger E2s.
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Figure 3.26: Threshold letter size as a function of contrast across eccentricities for subject
S4.

with hyperacuity tasks, which are in the range 0.6–0.8 (Levi, Klein, and Aitsebaomo [1985];
Strasburger, Rentschler, and Jüttner [2011]).

For our Tumbling-E task, Figure 3.26 plots representative subject TvE data, showing
threshold letter size (in degrees) versus eccentricity for the different contrasts. Note the
spectrally-ordered color coding of contrast, which persists for the next two plots. The TvE
plots seem to steepen as the contrast reduces, but can the numerical progression be par-
simoniously captured? Figure 3.27 plots the intercept versus slope of these data, which
hints toward a linear relationship between the two variables. Indeed, as Figure 3.28 shows,
E2 (or b/m), is constant across contrasts, with an average value of 2.5, in agreement with
Table 3.17. The E2s of our subjects (given in tabular format later, in Table 3.18), ranged
from 1.73 to 3.2.

3.3.9.3 Peripheral contrast-varying acuity

The previous section evaluated how acuity changes with eccentricity using the E2 measure,
and showed how this relationship holds across contrasts. Although the effect of contrast on
acuity in the fovea has been thoroughly evaluated, fewer studies have explored the effects
of contrast reduction on peripheral acuity. The aforementioned study of Herse and Bedell
([1989]) is one example. Although their goal was to capture the letter CSF (LCSF), the axes
can be switched as described above to yield acuity versus contrast curves. Similarly, the
results of Virsu and Rovamo ([1979]) for peripheral grating CSF can be transformed in this
way. Lastly, Strasburger, Harvey, and Rentschler ([1991]) measured contrast thresholds for
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Figure 3.27: Intercept versus slope of threshold letter size at various contrast levels. Contrast
colors match those of Figure 3.26.

Figure 3.28: E2 derived from the data of Figure 3.27 across contrasts.
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Figure 3.29: Representative data plot, with abscissa transformed to absolute units of visual
angle. S4, 10◦, all contrasts.

fixed letter sizes much like Herse and Bedell ([1989]). However, when these authors plotted
their data as TvE curves for each contrasts (much like we do in our Figure 3.26), they
rejected a linear relationship of threshold size with eccentricity for all contrasts–they found
a steepening of TvE with lower contrasts, and linearity with high contrast only out to 6◦ of
retinal eccentricity. Nevertheless, for our range of conditions, we found linear variations of
threshold size with eccentricity at all contrasts, so we will move on to a discussion of acuity
versus eccentricity.

3.3.9.4 Contrast-varying critical spacing

Critical spacing is the minimal flanker spacing at which crowding occurs, and is typically
measured using the center-to-center distance between two objects. It can be determined
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from plots such as Figure 3.17 by noting the value on the x-axis where the “kink-point”
between the two lines occurs. Note that the units for the abscissa in Figure 3.17 are nominal,
however. Since peripheral crowding is thought to be mostly invariant to target size (Levi,
Hariharan, and Klein [2002]; Tripathy and Cavanagh [2002]; Pelli, Palomares, and Majaj
[2004]), depending only on eccentricity, these nominal values must be converted to absolute
degrees of visual angle. Furthermore, the nominal value must be converted from edge-to-edge
spacing to center-to-center spacing. This simply requires adding “1” to the nominal spacing.
Figure 3.29 is a representative plot of the data from Figure 3.17 converted to absolute units
on the abscissa. To perform this operation, the nominal units (plus one, to yield center-to-
center spacing) on the abscissa are simply multiplied by the ordinate, which represents the
letter size at that threshold. The resultant product is the corresponding absolute center-to-
center spacing. It is worth a reminder that our experimental paradigm fixed the nominal
spacing, and varied the whole stimulus size. Thus the resultant threshold measures are
not located at evenly distributed absolute spacings, such as those experiments that traverse
absolute flanker spacing with the method of constant stimuli.

This plot is illuminating in several ways. First, note that the constrained two-line plot
becomes the intersection of a vertical and horizontal line with this coordinate system. This
is by construction, since a line with a slope of -1 (on log-log coordinates) implies a recip-
rocal relationship that gets canceled to a constant with the multiplication described in the
previous paragraph. Second, note the systematic change in baseline threshold size (ordinate
of the horizontal part of the curve) which elevates with decreasing contrast. Finally, and
most importantly, the absolute critical spacing is evident from the ordinate corresponding
to the vertical section of each curve. Many of these spacings all lined up at the same or-
dinate, specifically those of higher contrasts (cooler colors). The lower contrasts, however,
represented by the hotter colors, exhibit an increase in the critical spacing. This increase of
the crowding zone for low-contrast stimuli is a new finding. It has not been identified before
because those experiments that have used low contrast often covaried contrast and size to
keep a constant performance level (Siderov, Waugh, and Bedell [2013]). The contrasts we
used (down to 2.5%) are also lower than those typically employed by crowding researchers.

Figure 3.30 plots the difference in measured critical spacing on the Y axis (in degrees),
versus the difference in letter size on the x-axis (in degrees). Both these changes are in
relation to the fitted high-contrast value (critical spacing and unflanked acuity, respectively)
at each eccentricity. The symbols indicate eccentricity, as shown in the legend. Contrast
is colored as in Figure 3.26, from hot (low contrast) to cold (high contrast) spectral colors.
As already shown, lower contrasts yield larger threshold letter sizes at each eccentricity (see
Section 3.3.9.3). Figure 3.30 shows that there is also a concomitant increase in the extent
of the crowding zone (versus the high contrast crowding zone). Remarkably, these values
change in a linear fashion.

The absolute critical spacings should vary systemically across eccentricity. Figure 3.31
plots the “Bouma ratio,” or the ratio of critical spacing divided by eccentricity. As expected,
this ratio is relatively constant across the visual field, with a slightly different value for each
subject. Individual differences for this quantity are not unexpected (Pelli et al. [2007]).
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Figure 3.30: Linear change in critical spacing relative to high-contrast critical spacing as
a function of linear change in acuity (relative to high-contrast acuity), across eccentricity
(indicated by marker) and contrasts (colored as Figure 3.26: hotter colors denote lower
contrasts.) Identity (1-to-1) line is indicated.
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Table 3.18: Fitted model parameters for the five subjects: high-contrast foveal acuity,
E2 (acuity changes with eccentricity), and high-contrast Bouma ratio for size of absolute
critical spacing.

Subject Threshold( -100%, Fovea) (min) E2 bHC

S1 1.06 2.4 0.33
S2 1.25 2.9 0.35
S3 1.1 3.2 0.32
S4 0.96 2.9 0.14
S5 2.8 1.73 0.65

Table 3.19: General constants used for all subjects. Foveal and peripheral critical contrast
and slope from two-line fit of Figure 3.24, for normalized acuity versus contrast.

Fovea Periphery
Crit. contrast m Crit. contrast m
0.70 0.52 0.30 0.67

The various values are shown in the last column of Table 3.18, reasonably within the range
expected from the literature (Pelli, Palomares, and Majaj [2004]).

3.3.9.5 Full quantitative model

Now, given the components described in the previous sections, it is possible to create a single
equation to model the critical spacing under the combination of all stimulus manipulations
described.

Terms: thresh(C,E) = Threshold at contrast C and eccentricity E. HC =high contrast

High contrast threshold at eccentric locations can be determined using subject’s E2 and
foveal acuity. Specifically, each subject’s high-contrast acuity grows with eccentricity at a
rate dictated by their particular E2 (see Table 3.18 for values).

thresh(HC,E) = thresh(HC, 0)× E

E2

+ thresh(HC, 0) (3.4)

Contrast-dependent threshold across the visual field can be determined using two-line fit:

(con >= critical contrast(C,E)) : thresh(C,E) = thresh(HC,E) (3.5)

(con < crit. con.(C,E)) : thresh(C,E) =
thresh(HC,E)

1.0−mE × log10
crit.con.(E)

con

(3.6)
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In words, Eq. 3.5 and Eq. 3.6 mathematically define the two-line fit from Figure 3.24. If
the contrast exceeds the critical contrast for that eccentricity (see Table 3.19), the threshold
size will equal that of a high-contrast stimulus, which was determined in Eq. 3.4. If the
contrast is less than the critical contrast, the threshold size will be elevated from the high-
contrast threshold, as determined by the appropriate slope for the eccentricity (mE) from
Table 3.19. Since it is actually the proportion of acuity that is linear, the scaling term
appears in the denominator of Eq. 3.6.

Crowding-limited threshold is determined by Bouma ratio, low contrast (large size) factor,

and the constrained two-line fit:

critical spacing(C,E) = b× E + (thresh(C,E)− thresh(HC,E)) (3.7)

(spacing >= crit. spac.(C,E)) : thresh(C,E) = thresh(HC,E) (3.8)

(spacing < crit. spac.(C,E)) : thresh(C,E) = (log10

crit.spac.(C,E)

spacing
)× thresh(HC,E) (3.9)

First, critical spacing is determined in the usual way as a multiple of the eccentric-
ity (Eq. 3.7). The correction factor from Section 3.3.9.4 is added to account for the low
contrast/larger size effect. Lastly, the size versus spacing two-line fit is used. If the center-
to-center flanker spacing exceeds the critical spacing, the size threshold is simply the un-
crowded threshold—performance is unaffected by crowding. If the flankers are within the
critical spacing, threshold elevation occurs. The exact amount of elevation defined in Eq. 3.9
is determined by the constrained two-line fit, as described in Section 3.3.8. In words, the
threshold elevation is directly proportional to the difference between log10(nominal critical
spacing) and log10(nominal spacing), or, equivalently, the log10 of their ratio.

Finally, crowding-limited, contrast-dependent, threshold is the worse of the two
thresholds:

thresh(C,E) = maximum(threshcrowding(C,E), threshcontrast(C,E)) (3.10)

For a statistical validation that the parameters of Table 3.18 and Table 3.19 are appro-
priate, a rigorous model checking procedure would iterate through the possible model space.
For example, the fovea vs. periphery distinction for the contrast-dependent two-line fit pa-
rameters appears justified based on Figure 3.24, but a principled validation would allow:
(1) all parameters free, (2) all parameters yoked together, or (3) fovea vs. periphery (as we
have done), and compare the chi-squared value (or AIC/BIC) for each of these possibilities.
In a similar vein, an illuminating diagnostic procedure is to look at the residual thresholds
versus the maximum-likelihood estimates. Ideally the residual plots will be absent of any
systematic patterns of errors, as systematic error patterns indicate missing terms in the
model (Mosteller and Tukey [1977]).
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Figure 3.32: Hypothetical performance levels for crowded letter identification across size and
spacing, at the fovea.

3.3.9.6 Methodological questions: procedure

As discussed previously, there are several advantages to measuring crowding using the proce-
dure described. Mainly, since size and absolute spacing are covaried, the threshold measured
will always yield a true limit of discrimination, whether it is determined by crowding, or
by acuity limitations. Other paradigms require stimulus titration to identify appropriate
size/spacing combinations for a given eccentricity. The downside of the crowded acuity
method is that it is not always clear what the limiting factor is. Typical experiments to
identify the critical spacing vary the absolute spacing with fixed size stimuli (Bouma [1970];
Toet and Levi [1992]; Pelli, Palomares, and Majaj [2004]). To test size invariance, some re-
searchers have varied the size with fixed (absolute) spacings (Tripathy and Cavanagh [2002];
Pelli, Palomares, and Majaj [2004]), and more recently one group has varied the relative
spacing (Siderov, Waugh, and Bedell [2013]) at different sizes.

The general procedure can be made precise by considering Figure 3.32. This figure shows
a simulation of how stimuli of different sizes and spacings may yield different performance
levels for identification of a crowded letter at the fovea. The exact experimental details are
not crucial, but rather the parameter space indicated by Figure 3.32. Most experiments de-
termining critical spacing correspond to a vertical slice of this graph, with the critical spacing
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(or equivalently, the size of the crowding zone) determined by the ordinate where a certain
threshold performance is achieved. For the data of Figure 3.32, it is clear that performance
(and critical spacing) roughly scales with target size and separation in tandem. Note that
this is particular to foveal targets and does not hold in the periphery. In the periphery,
performance for a fixed separation is roughly independent of target size. Figure 3.32 would
have the appearance of horizontal bands in that case.

What is missing from this figure is performance degradation based on acuity limitations.
There would also be a minimum size defined by the acuity limit. Performance below this limit
would be compromised. A plot like Figure 3.32 demonstrating this effect would be made up
of vertical stripes, with a sharp transition indicating the acuity threshold. Horizontal slices
would exhibit a sigmoidal shape, due to the known shape of performance versus size.

The result of these two limitations (crowding and acuity) would then be the product of
these two two-dimensional plots, if these two factors are truly independent. It is not incon-
ceivable there there is an interaction between acuity and crowding, making the compound
effects more complicated. Is it possible to isolate the effects with our data? Unlike traditional
methods, the crowded acuity staircase procedure finds thresholds at diagonal lines on the
size/spacing grid of Figure 3.32–the dashed lines indicating the iso-nominal spacing lines.
Instead of using the size threshold from the staircase as we have done, it may be possible
to place each raw data point on the two dimensional grid, and perform two-dimensional
smoothing (such as kernel density estimation) to reveal the true iso-performance levels at
each location on Figure 3.32. These results could potentially shed light on the complex
interplay of size and spacing above and beyond the method we have employed, which (in
effect) loses information. The addition of the third independent variable, contrast, compli-
cates isolation of the true interactions even further, since contrast and threshold size are
(necessarily) confounded.

3.3.9.7 Chapter summary

In this chapter, we have presented the results of an experiment that systematically explored
the effects of stimulus contrast, visual field location, stimulus size and flanker spacing of
Tumbling-E stimuli across the visual field. The ultimate goal was a quantitative model ca-
pable of describing crowded acuity at different values of each stimulus parameter. Along
the way, it was necessary to model the various contributing factors to threshold uncrowded
acuity, such as the effects of contrast, eccentricity, and their combinations, which have not
been conclusively quantified previously. This model is a useful tool in describing expected
baseline performance as a normative measure. Furthermore, the various coefficients presum-
ably yield insight about the underlying anatomical sources contributing to performance, and
may help advance our understanding of the locus of phenomena such as crowding.
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3.4 Crowded Tumbling-E acuity in an S-cone

isolation paradigm

3.4.1 Introduction

The physiological locus of crowding remains elusive. Early work successfully identified that
crowding was not retinal, based on evidence from contralateral effects (Flom, Heath, and
Takahashi [1963]). In these experiments, Flom, Heath, and Takahashi ([1963]) showed that
eye of origin was not a factor in crowding effects. Specifically, when the target is presented
to one eye, and the flanker(s) to the other eye, crowding is just as strong as when the
two stimuli are presented to the same eye (see also Tripathy and Levi ([1994])). Due to
the anatomical architecture of the visual system, this demonstrated that the interactions in
crowding happen after the signals from the two eyes are combined—in primary visual cortex
(V1) or later. Specifically, signals from the two eyes remain separate until V1.

Since then, however, progress in pinpointing a neural locus has been slow and inconclu-
sive. Using psychophysics and reasoning about cortical distance, Liu et al. ([2009]) claimed
than crowding was unlikely to originate in V1, as this would require signal propagation across
the vertical meridian. Due to the anatomy, however, the neural locations of cross-meridian
objects would be quite distant. Thus these authors posited that crowding occurs beyond
V3, instead proposing hV4 or LOC (lateral occipital cortex). Using EEG, Chicherov, Plomp,
and Herzog ([2014]) showed that the N1 signal is associated with crowding. This implicates
high-level areas, since this signal originates in LOC. Others who champion a locus beyond
V1 for crowding include Freeman and Simoncelli ([2011]) and Freeman, Donner, and Heeger
([2011]), who identify V2, or inter-area correlations, from psychophysics and modeling. Fi-
nally, Motter ([2009]), identifies V4 based on electrophysiology.

Using functional magnetic resonance imaging, however, Millin et al. ([2014]), did see a
suppression of signals in V1 that could be attributed to crowding. Other neuroimaging
results from the same lab confirmed this (Kwon et al. [2014]). With EEG and fMRI, Chen
et al. ([2014]) confirmed modulation of signals in V1, believing early suppression to be a large
contributor to crowding. Also using fMRI, Anderson et al. ([2012]) found signal changes
across all of visual cortex, from V1 to V4, with the largest magnitudes in later areas.

Our approach, using only psychophysics, was to target a visual pathway with known
anatomical segregation, the short wavelength sensitive (SWS) cone, or “S-cone,” system.
Due to its unique anatomical structure, study of this pathway has unique theoretical im-
plications, and also practical benefits. For the latter issue, it has been shown than mea-
suring visual function while isolating the S-cone pathway may yield diagnostic information
about certain retinal diseases, including diabetic retinopathy, glaucoma, and retinitis pig-
mentosa (Johnson et al. [1993]; Adams et al. [1987]; Sandberg and Berson [1977]; Greenstein
et al. [1989]). Theoretically, the koniocellular pathway, driven primarily by S-cones, features
distinct loci in V1 (Hendry and Reid [2000]). It is conceivable that any phenomenon depen-
dent on lateral interactions could exhibit identifiable properties that reflect the layout of
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Figure 3.33: Experimental setup for S-cone isolation experiments.

the underlying pathway. A behavioral difference versus experiments that target traditional
visual channels may yield insights about the nature of the interactions. How S-cone acu-
ity changes with peripheral viewing has been explored by Anderson, Zlatkova, and Demirel
([2002]), who identified that peripheral acuity was limited by sampling from small bistrat-
ified ganglion cells. Other researchers have studied a variety of phenomena in the context
of the S-cone channel, including surround suppression (Xiao and Wade [2010]), binocular
rivalry (O’Shea and Williams [1996]), and oculomotor distractor effects (Sumner, Adamjee,
and Mollon [2002]). As far as we know, there has been no previous measurement of crowding
using an S-cone isolation paradigm.

3.4.2 Methods

3.4.2.1 Experimental apparatus

The experimental setup comprised a projector, computer screen, and optical bench with a
beam splitter and various optical filters to yield the desired experimental conditions for S-
cone isolation. A schematic diagram is shown in Figure 3.33. In our design of the apparatus
we followed the examples of several classic papers from the literature (Rabin and Adams
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Figure 3.34: Transmittance for Wratten filters used in experiment. Top plot: Wratten 16 for
adapting yellow/orange background. Bottom plot: Wratten 47b for short-wavelength-limited
stimulus.

[1990]; Swanson [1989]; Anderson, Zlatkova, and Demirel [2002]; Anderson et al. [2003]). Ba-
sically, a blue stimulus display was overlaid with a bright orange/yellow background whose
function was to adapt the L and M cones. To achieve this, the output from a Kodak Ekta-
graphic III A Projector was passed through a Wratten 16 long-pass filter and onto a diffusing
screen made from tracing paper mounted on a clear glass plate. The luminance of the dif-
fused orange/yellow light was 275 cd/m2, as measured with a Minolta LS100 photometer. A
beamsplitter, located in front of the subject’s testing eye, combined the adapting background
in a 50/50 ratio with a 15” CRT computer screen. Directly in front of the beam splitter a
Wratten 47B short-pass filter was used to limit the stimuli to short wavelength light. The
transmittance of the two chromatic filters used is shown graphically in Figure 3.34. The
computer displayed high contrast white stimuli on a black background. The luminance of
the target, after passing through the filter, was measured at 0.9 cd/m2. The image of the
adapting screen completely covered the monitor on the beam splitter. The experiment was
conducted in a completely dark room.

A fixation line appeared near the top of the CRT display, while the stimuli were centered
at 3, 5, or 10 degrees in the lower visual field. Additionally, for foveal conditions, both
the fixation line and stimuli were centered in the display. Stimuli comprised Tumbling-E



CHAPTER 3. CROWDING 118

Table 3.20: Summary of conditions

Stimulus Background
Condition Flankers Filter Luminance Filter Luminance

S2 S-cone2 2 Wratten 47B 0.9 cd/m2 Wratten 16 275 cd/m2

A2 achromatic2 2 Wratten 47B 0.9 cd/m2 (off)
S4 S-cone4 4 Wratten 47B 0.9 cd/m2 Wratten 16 275 cd/m2

A4 achromatic4 4 Wratten 47B 0.9 cd/m2 (off)
LC4 low contrast4 4 1.8ND 0.9 cd/m2 2ND 100 cd/m2

patterns satisfying Sloan specifications (NAS-NRC Committee on Vision [1980]), rendered
and presented using custom software written in Python with the PsychoPy psychophysics
library (Peirce [2008]). When flanked, the target E was surrounded by either four flankers
(above, below, and to each side), or by flankers positioned to the left and right of the target.
Flanker spacing was specified in nominal units, relative to the stimulus size, and measured
from the center of the target to the center of the flanker. For the condition with two flankers,
5 spacings were tested: 1.5×, 1.75×, 2×, 3×, and 6×. For the conditions with four flankers,
an additional spacing of 1.25× was tested. Stimuli were presented for 150 milliseconds,
after which subjects responded with the arrow keys on a traditional computer keyboard.
Immediately after the subjects responded for a trial, the next stimulus appeared.

There were five luminance conditions in the main experiment of the study, summarized
in Table 3.20. Two conditions (S2 and S4) used the S-cone isolating setup described above,
with either two or four flankers. For two other conditions (A2 and A4) the projector was
turned off, yielding a blue-on-black stimulus. Both two and four flankers were tested with this
setup. The remaining condition (LC4) used four flankers with a highly reduced achromatic
stimulus contrast. Contrast was reduced in two ways: the projector was again used, but
with an 2.0 ND filter in place of the Wratten 16 filter, and the CRT screen luminance was
reduced by placing a 1.8 ND filter in the optical path in place of the Wratten 47B filter.
This ND filter matched the luminance of the blue-filtered stimulus in the main experiment:
0.9 cd/m2. The luminance of the white background from the projector was 100 cd/m2.

Finally, there was a separate control experiment to validate S-cone isolation conditions,
at 8◦ in the lower vision field. For this experiment, neutral density filters were placed
between the Wratten 16 filter and the diffusing screen, to test various luminances of the
yellow adapting background. The stimulus display incorporated the Wratten 47B filter.
The details of this experiment, and its motivation, are described in the subsequent Results
section.

Five young subjects with normal vision participated in the experiment. All wore their
normal correction and viewed the stimulus with their right eye. Their left eye was occluded
with an eye patch. Subjects were seated, with their head placed in a chin rest. At the
beginning of each condition subjects dark adapted for a few minutes. Subject YTY had
extensive experience with peripheral vision experiments, while the other four had relatively
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little experience with experiments in peripheral vision. All subjects practiced each condition
at each eccentricity at least once before data collection.

3.4.2.2 Psychophysical procedure

In the first phase of the experiment, both of the two-flanker conditions were tested for
each subject (in a random order). Next, the four-flanker conditions were tested, with the
order randomized. Each block for a condition comprised all flanker spacings at a randomly
chosen eccentricity. For a given set of stimulus parameters (luminance condition, eccentricity,
spacing), a three-down, one-up staircase determined the smallest stimulus size that could be
identified at 79% correct. Each staircase began with a stimulus that was well above threshold.
To determine the final threshold, the last eight out of ten reversals were averaged. For each
stimulus condition, two staircases were run on different days, and the average of the two
runs is reported.

3.4.3 Results

3.4.3.1 Validation of S-cone isolation

To confirm that our experimental paradigm was indeed isolating S-cones, we used similar
logic as Rabin and Adams ([1990]) and Anderson, Zlatkova, and Demirel ([2002]). As stated
by Anderson, Zlatkova, and Demirel ([2002]), when plotting acuity (in terms of threshold
letter size) versus background luminance, the curve will exhibit a steeply rising portion where
acuity is mediated by L and M cones, and then a plateau which indicates the S-cone regime.
The curve flattens since S-cone acuity is unaffected by the background. Rabin and Adams
([1990]) note that this shape reflects underlying Stiles π mechanisms. Anderson, Zlatkova,
and Demirel ([2002]) confirmed this effect at a variety of locations in the visual field, from
the fovea to 35◦ in the nasal and temporal retina.

Figure 3.35 shows our results from this control experiment for each subject. The target
stimuli was unchanged from the main experiment, located at 8◦ in the lower visual field.
Neutral density filters placed between the projector and the diffusing screen modulated the
luminance of the adapting background. A range of luminances were tested, from very dim
backgrounds to several that were brighter than that used in the main experiment. The
red dashed line in Figure 3.35 indicates the luminance of the background used in the main
experiment (275 cd/m2), well within the plateau region corresponding to the S-cone regime.

3.4.3.2 Main experimental results

Figure 3.36 plots representative results for all four eccentricities of one subject, for the
achromatic two-flanker condition. As expected, acuity worsens with eccentricity, and worsens
when flankers are located near the target (left side of plot). The good fit of the “constrained
-1 slope” two-line fit described earlier (Section 3.3.8) is evident in this plot. One fact that
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Figure 3.35: Threshold letter size as a function of yellow background luminance for S-cone
isolation stimuli. Average and standard deviation of two staircases. Red dashed line indicates
background luminance of main experiment.

is also clear is that the foveal condition has little crowding at the smallest spacing tested
(1.5×), motivating the 1.25× spacing that was added for the four flanker conditions.

The complete set of raw empirical results for this experiment are shown in Figure 3.37
and Figure 3.38. The only difference in these two plots is whether the abscissa (flanker
spacing) is specified in nominal units, or instead in absolute units of visual angle. To con-
vert from the nominal units of Figure 3.37 to the absolute units of Figure 3.38, the nominal
spacing (dependent variable) is multiplied by the ordinate (letter size), with the resultant
value specifying a center-to-center spacing in degrees of visual angle. If the model com-
pletely describes the data, the plot will have the appearance of an “L”–a hinged vertical and
horizontal line, shown by the dashed lines in Figure 3.38. The horizontal section, like the
plateau in the nominal plots, indicates that the widely separated flankers are not affecting
target identification. The vertical section corresponds to the crowded regime. In this regime
there is a trade-off between spacing and size, as described in the earlier chapters. Although
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Figure 3.36: Representative results for all eccentricities and spacings for one condition.
Points indicate mean of two staircases. Dashed lines indicate constrained two-line fit. Error
bars indicate standard deviation of two staircases.

the fit is not perfect, it summarizes the data reasonably well overall, and quite well in some
cases. For certain subjects and conditions, such as the achromatic four-flanker condition
(third columns), it is clear that there is sometimes a curved knee in the function rather than
an abrupt angle. This observation hints that a more complex function such as a rectangular
parabola (Gurnsey, Roddy, and Chanab [2011]) could also fit the data, at the expense of
additional parameters.

3.4.3.3 Fitted summary results

Figure 3.39 summarizes how the fitted two-line parameters change across eccentricity. Each
row is a different variable or analysis method, and each column is a subject (or the subject
averages, last column). The five luminance conditions are presented as sets of points/curves
on each panel. The X-axis is always degrees of eccentricity, and the Y-axis depends on
the analysis. For each row (from top) ordinate is: nominal critical spacing (top row), ab-
solute critical spacing (second row), Bouma ratio (absolute spacing

Eccentricity
): (third row) or, threshold

unflanked letter size (bottom row). The blue lines/points are the condition with the bright
yellow background, for S-cone isolation. The black lines are the achromatic condition, with-
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Figure 3.37: Threshold letter size as a function of nominal flanker spacing. Rows indicate
subjects, columns indicate luminance condition, from left: S-cone2, achromatic2, S-cone4,
achromatic4, low contrast4. Eccentricities are colored as in Figure 3.36
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Figure 3.38: Threshold letter size as a function of absolute flanker spacing. Same data as
Figure 3.37, but with converted abscissa. Eccentricities are colored as in Figure 3.36.
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Figure 3.39: Parameters of two-line fits from Figure 3.38, as a function of eccentricity. Units
of ordinate differ for each row, see text for details. Subjects are in columns. For each panel,
blue curves indicate the S-cone conditions, black curves indicate achromatic conditions, and
red curve indicates low contrast condition. Solid lines indicate two flankers, and dotted lines
indicate four flankers.
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out the adapting background. Solid lines indicate two radial flankers, while dotted lines
indicate four flankers. Lastly, the red curve/points indicates the low contrast condition.

The bottom row depicts the threshold letter size in the absence of flankers (the ordinate
of the flat section on the constrained two-line fit). The top row indicates the critical spacing
(kink-point on two-line fit) in terms of multiples of the unflanked size (shown in the bottom
row). It is rare to plot the data in this way, since the critical spacing in terms of multiples of
the stimulus size is not terribly useful. This is because critical spacing varies predominantly
with eccentricity, independent of stimulus size (Tripathy and Cavanagh [2002]; Pelli, Palo-
mares, and Majaj [2004]). The shape is consistent with Figure 3.19, showing an increase in
nominal spacing with eccentricity, then a plateau, for most subjects.

The critical spacing in absolute units of visual angle (second row), is much more useful,
as the curves now show a natural grouping, and there is also a linear trend with eccentricity.
It appears that the lines corresponding to the same flanker condition (i.e., same line style
of solid or dashed) are parallel, implying similar slopes. The intercepts, on the other hand,
seem to vary based on luminance condition (line color). We shall explore this further in the
next section.

The remaining row shows the Bouma ratio—the absolute critical spacing divided by the
eccentricity. The point at the fovea is undefined, since the eccentricity is zero. Interestingly,
this plot has less regularity than expected. Generally the Bouma ratio should be the same
at all eccentricities, such as our Figure 3.31. While the two high contrast conditions (black
lines) may exhibit the expected straight line, the other curves show a decrease with greater
eccentricity. Note that although there are individual counterexamples given in Pelli et
al. ([2007]), for all subjects their trend goes the opposite way, with increasing ratio versus
eccentricity. Our result calls into question the validity of a single ratio capable of describing
critical spacing across eccentricities for these data.

3.4.3.4 Slope and intercept of critical spacing versus eccentricity

As shown in the previous section, the ratio of the critical spacing divided by eccentricity
(Bouma ratio) appears uninformative for our empirical data. The measure of E2, described
in Section 3.3.9.2, may be useful since it has a dependency also on the intercept term (rather
than just the slope). Figure 3.40 plots the variables for lines fitted to each of the sub-
jects/conditions from the third row of Figure 3.39. For each panel, the condition is indicated
by the abscissa. The conditions are ordered as follows: S-cone 2-flanker, achromatic 2-flanker,
S-cone 4-flanker, achromatic 4-flanker, low contrast 4-flanker.

E2, shown in the rightmost panel, resists any clear interpretation. The intercept and
slope, however, exhibit the qualitative patterns described in the previous section—the inter-
cept is associated with the chromatic condition (achromatic or S-cone isolating), while the
slope is associated with the crowding condition (two or four). This observation challenges
the generality of the Bouma ratio as sufficient for capturing all changes in critical spacing
versus eccentricity. Similarly, E2 failed to capture important patterns in the data.
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Figure 3.40: Slope, intercept, and E2 ( intercept
slope

) of absolute critical spacing versus eccentricity
for each subject, across conditions.

It could be hypothesized that the spatial extent of crowding is determined by the un-
flanked foveal threshold for each subject. Figure 3.41 plots the unflanked foveal threshold
against both the intercept and slope of the linear fit of critical spacing versus eccentricity for
each subject and condition. The good correlation of the intercept with the foveal threshold
(left panel) is not surprising. At the fovea, the limiting factor in identification is the size
of the target stimulus, since overlap masking will be the dominant detrimental effect. The
regression line fitted to all data (green dashed line) has slope 0.64 and intercept 0.035. The
relationship of the slope with the unflanked foveal threshold (right panel) is more interesting.
The regression lines indicate that within each condition, larger foveal values are associated
with higher (steeper) slopes. For the two shallowest conditions, involving two flankers (black
and blue symbols/lines), this relationship is weakest.

3.4.4 Summary

This section presented experiments measuring foveal and peripheral crowded acuity under
an S-cone isolation paradigm. First, we found that the constrained two-line model, used
to determine the critical spacing from crowded acuity, fit our data well. The presentation
of the results in absolute units (Figure 3.38) demonstrates this actuality especially well. A
complicated model may capture more of the rounded shape visible in some conditions, but
the two-line fit is parsimonious, provides an excellent fit for most conditions, and its defining
parameters are easily interpretable—the kink point is the critical spacing, and the ordinate of
the flat portion is the unflanked size. The success of this model under our stimulus conditions
is important, since it validates the generality of the spacing versus size trade-off concept (see
Section 3.3.8).

The control condition of a very low contrast white-on-white stimulus (red curves in Fig-
ure 3.39) indicate that the extent of crowding is correlated with per-subject resolution pa-
rameters. Since the low contrast stimuli had similar critical spacings as the S-cone stimuli,
this suggests that the lateral interactions can be modeled as a function of the threshold
unflanked letter size and eccentricity. Therefore, the interactions we observed in the S-cone
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Figure 3.41: Unflanked foveal threshold versus intercept (left panel) and slope (right panel)
of absolute critical spacing versus eccentricity. Symbol indicates subject as shown in key,
and color indicates condition as follows: blue: S-cone2, black: achromatic2, teal: S-cone4,
gray: achromatic4, red: low contrast4. Lines are per-condition linear regressions. Green
dashed line (left panel only) is regression for aggregated data.

isolation paradigm can be explained by the low-contrast model described in the previous
section.

This observation could suggest one of two things. If crowding does have a single neural
locus, it must influence a channel that is insensitive to the chromatic content of an image.
This could include either the luminance channel in the standard model of the color sys-
tem (Boynton [1979]), or mechanisms after the pathways are combined. Alternatively, it
has been proposed that crowding acts at multiple levels of the visual system (Whitney and
Levi [2011]), representing a fundamental aspect of visual processing (Chaney, Fischer, and
Whitney [2014]). If so, our results could simply be interpreted as showing that the spatial
extent of interference in the S-cone pathway is similar to the extent of interference in the
traditional luminance-based channel. Performing a quantitative comparison, such as using
cortical distance (Levi, Klein, and Aitsebaomo [1985]) is an intriguing possibility.
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Chapter 4

Dissertation summary and conclusion

The two main themes that have I explored in this dissertation are letter recognition and
crowding. To pursue the topic of letter recognition, I presented two approaches: the statis-
tical analysis of confusion matrices, and modeling letter recognition using a convolutional
neural network. To pursue the topic of crowding, I presented experiments with artificial
letter-like symbols, as well as experiments using Tumbling-E stimuli under various condi-
tions of contrast and luminance.

Consideration of confusion matrices was commonplace in the past, but has become less
popular in recent time. The generality of letter recognition results is surely one reason for
their fall from favor. It seems that at one time (1960s-1980s) there was hope to identify
a single “objective” and “true” set of letter confusions, particularly for the capital letters.
Obtaining such a definitive result would shed much light on the neural components involved
in letter processing. Instead, like in so many areas of science, knowledge has made the
picture fuzzier, not clearer. I believe it is both the multidimensional structure of letters,
as well as the flexible and dynamic nature of our processing of visual form, that constitute
the difficulties. Nevertheless, I believe our results are a solid step towards identifying real
patterns in letter recognition results that may reveal condition-specific differences, detectable
in whole confusion matrices.

Our evaluation of a convolutional neural network is a first step towards modeling aspects
of the visual system in a more biologically-inspired way. While other approaches, such as
ideal-observer models, form a useful baseline for many tasks, there remains a gap in usage
of biologically realistic models. Neurally plausible models may be effective at reflecting
known phenomena from psychophysics, but more work is needed to test these networks with
empirical results. For example, a myriad of models have been proposed for hyperacuity, but
none has “stuck.” I believe applying a convolutional network to a benchmark task such as
this is promising. Then, a logical next step is to extend the network in various ways, such
as to exhibit crowding, and evaluate its performance.

There is more opportunity for cross-pollination of the ideas in this thesis. The convolu-
tional neural network could be applied to the line segments stimuli, and additive clustering
could be used to analyze the results. For a crowding-limited neural network, the manipula-
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tions described for the Tumbling-E patterns, such as low contrast of the target and flankers,
could be studied. Analysis of the spread of activation in the network may yield insights into
underlying neural mechanisms. “Digital lesioning” is another effective method that could be
employed along these lines.
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Appendix A

Raw data

A.1 Confusion matrices
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Figure A.1: AXL1
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Figure A.2: KMA1
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Figure A.3: RXK
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Figure A.4: RXL1



APPENDIX A. RAW DATA 135

Figure A.5: YTY1
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Figure A.6: AXL3
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Figure A.7: KMA3
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Figure A.8: RXK3
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Figure A.9: RXL3
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Figure A.10: YTY3
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A.2 Luce choice model parameters
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Figure A.11: AXL1: Luce choice βs

Figure A.12: AXL1: Luce choice ηs
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Figure A.13: KMA1: Luce choice βs

Figure A.14: KMA1: Luce choice ηs. Symmetric around diagonal.
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Figure A.15: RXK1: Luce choice βs

Figure A.16: RXK1: Luce choice ηs. Symmetric around diagonal.
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Figure A.17: RXL1: Luce choice βs

Figure A.18: RXL1: Luce choice ηs. Symmetric around diagonal.
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Figure A.19: YTY1: Luce choice βs

Figure A.20: YTY1: Luce choice ηs. Symmetric around diagonal.
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Figure A.21: AXL3: Luce choice βs

Figure A.22: AXL3: Luce choice ηs. Symmetric around diagonal.
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Figure A.23: KMA3: Luce choice βs

Figure A.24: KMA3: Luce choice ηs. Symmetric around diagonal.
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Figure A.25: RXK3: Luce choice βs

Figure A.26: RXK3: Luce choice ηs



APPENDIX A. RAW DATA 150

Figure A.27: RXL3: Luce choice βs

Figure A.28: RXL3: Luce choice ηs. Symmetric around diagonal.
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Figure A.29: YTY3: Luce choice βs

Figure A.30: YTY3: Luce choice ηs. Symmetric around diagonal.
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