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Alternative splicing is an important mechanism used by eukaryotes to expand 

their proteome and to regulate gene expression. To better understand the role of 

alternative splicing, we conducted a large-scale analysis of reliable alternative 

isoforms of known human genes, classifying each according to its splice pattern 

and supporting evidence.  Surprisingly, one third of the alternative transcripts 

examined contain premature termination codons, and most persist even after 

rigorous filtering by multiple methods.  These transcripts are apparent targets of 

nonsense-mediated decay (NMD), a surveillance mechanism that selectively 

degrades nonsense mRNAs.  Several of these transcripts are from genes for 

which alternative splicing is known to regulate protein expression by generating 

alternate isoforms that are differentially subjected to NMD.  I propose that 

regulated unproductive splicing and translation (RUST), through the coupling of 

alternative splicing and NMD, may be a pervasive, underappreciated means of 

regulating protein expression. Perhaps because the mechanism for NMD was 

discovered prior to the characterization of many genes, I also found that there is 

much overlooked evidence of RUST even for well-characterized genes.  

 I have also investigated alternative splicing regulation in Drosophila 

melanogaster. Using a splice junction DNA array, I characterized the splicing 

changes following RNAi knockdown of four key splicing regulators: dASF/SF2, 

B52/SRp55, PSI, and hrp48. I found that there is significant overlap in the 

splicing events affected by the two SR proteins, dASF/SF2 and B52/SRp55, 

indicating some functional overlap. I also found evidence that hrp48 is an 
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obligate partner for PSI. Finally, I found enrichment of previously defined cis 

binding sites for the SR proteins near the splice sites flanking splicing events that 

require dASF/SF2 or B52/SRp55. 

 Database search methods are of central importance in computational 

molecular biology. I have enhanced the standard method for evaluating database 

search methods by adding normalization and bootstrapping. These 

enhancements help neutralize a known defect in the evaluation scheme and 

allow statistical testing of results. Finally, a collaborator and I implemented a 

database search method that considers sequence context when generating and 

scoring alignments. Using the evaluation scheme mentioned above, we found 

that this extra information does not improve remote homolog detection. 
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PREFACE 
 

This thesis is divided into two somewhat disconnected themes. The first, major 

theme (Chapters 1 through 5) is alternative splicing, its impact on proteome 

diversity and gene regulation, and especially nonsense-mediated mRNA decay 

of alternative mRNA isoforms. Chapter 1 is a general introduction to alternative 

splicing and nonsense-mediated mRNA decay. Subsequent chapters detail the 

contributions I made in understanding alternative splicing as a mode of gene 

regulation. As my main subject, these chapters are followed by a chapter of 

discussion. This section ends with a chapter describing a microarray project for 

investigating alternative splicing regulation in fly. 

The second major theme (Chapters 6 through 8) is development and 

evaluation of database search methods. While this material is conceptually far 

removed from the first 4 chapters, I have chosen not to banish it to appendices. 

An introduction to this section is provided in Chapter 6. 

Finally, the appendices provide data and documentation that are of 

interest only to some readers. 

While there are other reasonable ways to organize disconnected themes 

in a single thesis, I chose this way because it allows me the most room to explore 

and explain all my work. The two main sections each have their own 

introduction and discussion. Despite some effort, I was unable to find a useful 

conceptual connection between the two themes. 
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CHAPTER 1 

 

 Introduction to Alternative Splicing and Nonsense-Mediated mRNA Decay 
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Alternative splicing 

As recently as the mid-1990s, prevailing wisdom held that alternative splicing 

was a rare, but interesting phenomenon.  Perhaps because it was first 

experimentally explored in the transcripts of mobile genetic elements like P-

element transposon and adenovirus, alternative splicing was believed to affect 

only “…a few percent” (166) of genes in general.  Following the sequencing of 

the human genome, however, it became clear that alternative splicing was much 

more prevalent.  EST-based analyses have shown that half or more of all human 

transcripts are subject to alternative splicing (137, 197).  Furthermore, 

widespread alternative splicing is not unique to humans (154).  Analysis of 

several eukaryotes, including mouse, fly, and worm, showed levels of 

alternative splicing in these organisms comparable to that in humans (41).  The 

theme that emerges from these recent studies is that where there is splicing, 

there will be alternative splicing. 

Since its discovery, alternative splicing research has focused on 

answering several fundamental questions. What are the biological roles of 

alternative splicing and of alternative isoforms? How is alternative splicing 

regulation carried out? How do genes evolve to become alternatively spliced? 

As awareness of the prevalence of alternative splicing has increased, finding 

answers to these questions has taken on new importance. 

Concerning the biological role of alternative splicing, two general classes 

of result emerged early on. First, alternative splicing was recognized as an 
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on/off switch for gene expression (27, 282). Exemplified by P-element and Sxl in 

Drosophila melanogaster, alternative splicing can be used to generate both 

functional and non-functional protein isoforms, thereby regulating the effective 

amount of gene product expressed in a cell. Second, alternative splicing is often 

used to generate a functionally diverse set of protein isoforms from a single 

genetic locus (20, 21, 96, 145, 201, 238). These isoforms may differ subtly or 

dramatically in function. In this way, alternative splicing acts as a multiplier on 

the gene content within a genome, generating a larger number of gene products 

from a limited number of genes. There are now many well-characterized 

examples in both categories. It is firmly established that evolution has 

repeatedly harnessed alternative splicing for multiple roles.  

One of the most active areas of alternative splicing research involves 

understanding the biochemical processes that control alternative splicing. 

Because many alternative splicing factors can also function as general splicing 

factors, understanding alternative splicing also requires an understanding of 

splicing in general, which is largely a  problem of understanding the 

interactions between the cis elements within pre-mRNAs and the trans factors 

that associate with them. 

The size and complexity of splicing regulation has been gauged in several 

ways. One observation is the physical size of the cellular apparatus that carries 

it out. The spliceosome is massive, approximately 40 x 60 nm (225, 291). Within 

this large complex are at least 145 distinct protein and ribonucleoprotein  
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factors, as recently shown via a mass-spec analysis of purified human 

spliceosomes, making the spliceosome the most complex cellular machine 

characterized to date (290). Genome wide analyses have revealed that more than 

3% of the protein-coding genetic endowment of humans is devoted to RNA 

metabolism (15). A recent RNAi screen in flies showed that 47 of the 250 RNA-

binding proteins that were tested can function as splicing regulators (215). This 

ratio is almost certainly an underestimate as the screen was set up to detect 

splicing changes in only two genes. Therefore, given the sheer number of factors 

involved, it is reasonable to expect that the complexity underlying splicing 

regulation is considerable.  

Splicing regulators can function by attracting, diverting, or repelling the 

spliceosome from specific splice sites. One way this is achieved is through 

binding cis elements present within pre-mRNAs. These elements can be found 

in both exons and introns and can activate or inhibit nearby splice sites. 

Discovery of the identities and activities of cis splicing elements has been the 

focus of much investigation. Traditional SELEX (56), functional SELEX (70, 172), 

genomic SELEX (142), mutagenic screens, and computational sequence analysis 

have all been used to discover binding sites for splicing regulators. However, in 

many cases knowledge of the binding site for a given splicing regulator is 

insufficient to predict splicing effects. Deciphering the inputs and outputs of 

splicing regulation has turned out to be similar to deciphering transcriptional 

regulation: the mere presence of a single transcription factor binding site or 
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splicing factor binding site is often not predictive of an in vivo role for the factor 

in question. In fact, the signals important for splicing regulation of RNA may be 

even more difficult to decode than the signals responsible for DNA transcription 

due to the increased capacity of RNA to form secondary structure relative to 

DNA. Deciphering the cis regulatory splicing code, therefore, remains a major 

challenge. 

How genes have evolved to become alternatively spliced remains an 

interesting and open question. Comparative genomics analyses have identified 

several genes whose patterns of alternative splicing have been conserved 

through millions of years of evolution (52, 191, 221). For example, the CLK 

family of protein kinases show a pattern of alternative splicing that is conserved 

from human, to mouse, to the sea-squirt, C. intestinalis (122). Presumably, 

splicing regulation of the CLKs evolved hundreds of millions of years ago in the 

common ancestor of chordates and has persisted to the present. However, recent 

large-scale surveys have shown that most human alternative splice events are 

not observed even in mouse (196, 212, 280). These observations indicate that, at 

least in humans, most observed alternative splicing events are more recently 

evolved. In the background of mostly non-conserved alternative splicing, 

instances of conserved alternative splicing are likely to be functional. 

Furthermore, this observation calls into question the assumption that all 

observed alternative mRNA isoforms are functional. Perhaps some represent 
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biochemical noise of the splicing apparatus which is only occasionally 

harnessed to generate functional, regulated alternative splicing (147, 148). 

Nonsense-mediated mRNA decay (NMD) 

It has been known for nearly a quarter-century that nonsense mutations and 

frameshift mutations that induce premature termination codons can destabilize 

mRNA transcripts (75, 146, 161).  First investigated in yeast and humans, NMD 

was subsequently observed in a wide range of eukaryotes and is now thought to 

occur in all eukaryotes (98).  Although there is a common core of trans-effectors 

of NMD—Upf1, Upf2, and Upf3—there are important and dramatic differences 

in several aspects of NMD amongst eukaryotes.  For example, the Upf1-null 

(NMD-null) has non-lethal phenotypes in several species such as a respiratory 

defect in yeast (161) and male-specific morphological defects in worm (123).  

However, NMD appears vital in mammals: NMD-null mouse embryos resorb 

shortly after implantation. Furthermore, NMD-null blastocysts isolated 3.5 days 

post-coitum undergo apoptosis in culture after a brief growth period (186). Also, 

the mechanism cells use to distinguish premature termination codons from 

normal termination codons differs from yeast to flies to mammals.  The 

mechanisms outside human and mouse are not well established, and it is not 

clear which mechanism was ancestral or when over evolutionary history it has 

changed.  These mechanisms have been the subject of intense investigation. 
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Mammalian NMD model 

Important details have emerged that establish the following framework for 

NMD in mammals (reviewed in (186)).  During pre-mRNA processing, the 

spliceosome removes intron sequences.  As this occurs, a protein complex called 

the exon-junction complex is deposited 20-24 nucleotides upstream of the sites 

of intron removal (156-158, 178, 226).  The growing list of identified components 

of this complex includes REF1/Aly, RNPS1, SRm160, Y14, DEK, UAP56, magoh, 

and eIF4a3 (59, 94, 156, 211, 242, 266).  The exon-junction complex acts as a mark 

to label the gene structure, after splicing.  After or co-incident with (or possibly 

before! (43)) export to the cytoplasm, the mature mRNA undergoes a first 

pioneering round of translation (63, 130, 164).  According to the current model, 

as the ribosome traverses the mRNA, it displaces all the exon-junction 

complexes in its path (181).  For normal mRNAs, when the ribosome reaches the 

termination codon it will have displaced all exon-junction complexes.  If any 

exon-junction complexes remain, a series of interactions ensues that leads to the 

decapping and degradation of the mRNA (Figure 1.1a).  These interactions 

involve the well-conserved Upf proteins, the translation release factors eRF1 

and eRF3 (266) and a decapping complex (176).  Thus, a normal termination 

codon is distinguished from a premature termination codon by whether it is 

positioned so as to allow the ribosome to displace all exon-junction complexes.  

This cell-biological model provides the mechanistic basis for the “50 nucleotide 

rule” for NMD in mammals (Figure. 1.1b):  If the translational termination 
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codon lies greater that about 50 nucleotides upstream of the final exon-exon 

boundary, the transcript is recognized and degraded by NMD (181, 204).  

This translation and splicing dependent model of NMD is supported by 

several lines of evidence (reviewed in (183)), including the following.  At and 

before the pioneering round of translation, the mRNPs are distinguishable by 

their association with the nuclear cap binding protein complex CBP80/20 and 

not the cytoplasmic eIF4E (130, 164).  Intronless transcripts are generally 

immune to NMD (42, 184, 288).  Tethering of any of several of the components 

of the exon-junction complex or Upf proteins to the 3’ end of a normal mRNA is 

sufficient to elicit NMD (177, 178).  A central component of the exon-junction 

complex is eIF4AIII (59, 94, 211, 242), which was previously identified as a 

translation factor (77).  Chemical inhibitors of translation and cis-element 

inhibitors of translation are potent inhibitors of NMD (23, 54).  And, finally, 

there appears to be strong selective pressure on eukaryotic genes to keep the 

termination codon sufficiently far downstream to avoid NMD (167, 204). 

The initial genetic studies in yeast identified three genes, UPF1, UPF2, 

and UPF3, that are required for NMD (161, 162).  Subsequent studies in C. 

elegans found NMD to require the worm orthologs of UPF1-3, called smg2, smg3, 

and smg4 in worms, plus the products of four additional genes, smg1 and smg-5-

smg-7 (49, 223).  Human orthologs for all of these have been identified and 

characterized (26, 64, 81, 188, 210, 240, 254).  In humans, both isoforms of UPF3 

associate with spliced RNA through interactions with components of the EJC.  
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UPF2 interacts with both UPF1 and UPF3 and localizes around the nucleus.  In 

yeast, translation termination factors eRF1 and eRF3 interact with UPF1 (76).  

The additional factors that are required in worm and are present in humans are 

responsible for phosphorylating and dephosphorylating UPF1.  It is likely that 

these extra factors carry out NMD regulation, but little is known of the inputs or 

outputs of this regulation. 
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StartStart StartStartStopStop StopStop

Gm AAAAARibo-
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Ribosome displaces all
exon-junction complexes

Exon-junction
complex

Gm AAAAA
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all exon-junction complexes;
release factors interact with
the exon-junction complex

More than
50 nucleotides

Gm AAAAA
NMD degradation

Multiple rounds of normal translation

(a) Stop codon is on last exon (b) Stop codon is premature

Figure 1.1. Recognition of premature termination codons in humans is splicing dependent. (a) 
During pre-mRNA processing, introns are removed and a set of proteins called the exon-junction 
complex is deposited.  According to the current model for mammalian NMD, these complexes 
serve to facilitate transport from the nucleus and to remember the gene structure.  During the 
first, pioneering round of translation, the ribosome will displace all exon-junction complexes in 
its path until it reaches a stop codon.  If the termination codon is on or near the final exon, as is 
the case for most genes, the ribosome will have displaced all exon-junction complexes.  The 
mRNA will then undergo multiple rounds of translation.  (b) If the termination codon is suffi-
ciently far upstream of the final intron position, exon-junction complexes will remain.  Interac-
tions ensue that result in the degradation of the mRNA by NMD.
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Variations in NMD recognition of Premature termination codons (PTCs) 

The mechanism for distinguishing premature from normal termination codons 

differs from yeast to flies to mammals (182).  The yeast and mammal systems 

have been characterized by the presence of a mark which targets the transcript 

for NMD, if found downstream of the stop codon.  In yeast, this mark has been 

reported to be a cis-element called the downstream sequence element (DSE) 

bound by Hrp1p (107, 289), though this model is not universally accepted (19, 

121, 182).  Hrp1p bound to the DSE is reported to be analogous to the 

mammalian mark, the exon-junction complex.  One key difference is that in the 

mammalian NMD system, the mark is splicing dependent, while it is not 

necessarily so in yeast.  Recent data from the Izaurralde lab has shown that 

NMD in flies is different than in yeast and in mammals, and it appears to be 

splicing independent for at least some genes (101).  This important result 

suggests that the mechanism of PTC recognition may vary more widely than 

was previously thought.  How PTCs are differentiated from normal termination 

codons in flies and in other organisms is now an interesting, important, and 

open question. 

Besides these differences among NMD in yeast, flies, and humans, there is 

evidence that the core model for NMD in mammals may have several wrinkles.  

For example, there is indirect evidence from human disease-associated 

mutations that NMD efficiency may vary among individuals, explaining 

variable phenotypes from identical dystrophin mutations (141); and among 
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tissues, as appears to be the case in Schmid metaphyseal chondrodysplasia (22).  

Furthermore, PTCs in different positions in the Factor VIII gene may lead to 

varying degrees of NMD degradation, as reflected in immunotolerance to 

exogenous Factor VIII in patients with Hemophilia A (78).  There are also a 

handful of exceptions to the 50nt rule.  There is evidence that there are sequence 

elements in humans that are functionally equivalent to a splicing event by 

serving as a binding platform for an EJC-like complex (144, 224, 260).  There are 

also instances of apparent NMD evasion by PTC+ mRNAs (16, 206, 231).  

Interestingly, some transcripts that would otherwise be targeted for NMD have 

been shown to interact with specific factors that protect them from NMD in a 

regulated manner (62, 160). 

 The central observation of my thesis, that alternative splicing often 

generates mRNA isoforms that are degraded by NMD, was made possible by a 

key result in the NMD field and the availability of a few key data sources. 

Establishing the mechanistic framework for NMD in mammals put the 50nt rule 

on solid footing and allowed it to be used as a predictive tool. The availability of 

the complete human genome sequence and public EST libraries allowed the 

large-scale EST mapping necessary for alternative splicing inference. Prior to 

publication of the human genome sequence, predictions of the number of 

protein-coding human genes were consistently and dramatically higher than 

those afterward. The reduction came largely from reassigning many distinct EST 

clusters to alternative isoforms instead of discrete gene loci. Armed with a large 
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set of inferred alternative isoforms and a basis for classifying mRNA isoforms as 

PTC+, we set about answering the question: how often does alternative splicing 

divert gene expression into the NMD degradation pathway? 
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CHAPTER 2 
 

Alternative splicing often generates isoforms with premature termination 
codons 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Note:  Much of the material presented in this chapter was included in the 
publication: 
 
Lewis BP, Green RE, and Brenner SE (2003).  Evidence for the widespread 
coupling of alternative splicing and nonsense-mediated mRNA decay in 
humans   Proc. Natl Acad Sci. 100 (1):  189-192. 
 
This chapter also includes indication of my contribution and some previously 
unpublished results that motivated the subsequent analyses. 
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Background 

Alternative splicing plays a major role in modulating gene function by 

expanding the diversity of expressed mRNA transcripts (40, 108, 115, 195).  An 

extreme example in Drosophila is the alternative splicing of the Dscam gene, 

which may generate over 38,000 distinct mRNA isoforms (237)—more than 

twice the number of predicted genes in the entire genome (3)—to mediate 

formation of neuronal cell-cell contacts.  Moreover, alternative splicing of genes 

with just a few isoforms may nonetheless yield profound regulatory effects.  

This is exemplified by human bcl-x, whose products include two isoforms with 

markedly different activities: Bcl-x(L) is an anti-apoptotic factor, whereas Bcl-

x(S) can induce apoptosis (34).  Seeking to understand alternative splicing and 

the protein repertoire encoded by the human genome, many groups have 

undertaken studies to infer and enumerate alternative mRNA isoforms (40, 45, 

120, 127, 136, 192). 

Standard analyses, however, may not provide a full appreciation of how 

alternative splicing modulates gene function.  Due to the limitations of the ESTs 

from which alternative splicing information is commonly derived (259), 

researchers sometimes cautiously restrict their analyses to exon skipping and 

mutually exclusive exon usage (40, 120).  Similarly, researchers commonly 

dismiss alternative transcripts that code for apparent early translational 

termination, since those mRNAs are deemed incapable of generating a 
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functional product. A more complete understanding of alternative splicing 

requires an unbiased consideration of all reliable alternative mRNA isoforms. 

Ben Lewis and I undertook such an analysis using the publicly available 

EST sequences within the dbEST database and the recently published human 

genome sequence. We aligned RefSeq genes to the genome sequence to infer 

their gene structures. Then, we aligned EST sequences to the RefSeq loci and 

inferred patterns of alternative splicing from these alignments. We interpreted 

these patterns of alternative splicing with respect to changes in the gene 

structure and with respect to NMD. 

My contributions to this project were as follows. First, I performed an 

analysis of human alternative splicing data compiled by Brett and co-workers 

(40). This analysis showed that alternative splicing often generates isoforms that 

induce changes in reading frame or directly insert premature termination 

codons (Figure 2.1). Furthermore, it is difficult to interpret the functional 

implication of these alternative splicing events with respect to protein coding 

potential as the slight bias against alternative splicing interrupting structural 

domains is removed when one only considers those alternative splicing events 

that change the reading frame or insert a termination codon. These data strongly 

suggested that a larger-scale, direct investigation into the link between 

alternative splicing and NMD was warranted. Second, I devised an outline of 

the experimental protocol for the direct investigation and helped refine it during  
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Figure 2.1 Analysis of human EST-inferred exon deletion and insertion alternative splicing (AS) 
events from Brett et al (40). (a) Mapping the AS events relative to coding sequence revealed that 
most affected the protein coding open reading frame (ORF). (b) Of the AS events that affected the 
ORF, but not the start codon directly, most either inserted a stop codon or changed the reading 
frame. (c) Exon deletions (DEL) were more likely than exon insertions (INS) to leave the reading 
frame intact. (d) The previously reported slight bias against AS events interupting structural 
domains was only present for AS events that left the reading frame intact.
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implementation. Finally, Ben Lewis and I collaborated to analyze the data and 

prepare the final published manuscript. 

Results and Discussion 

We mapped all ESTs from dbEST onto the gene loci sequences of all RefSeq 

genes and found that 3127 canonical RefSeq mRNAs were found to have 6884 

alternative splice pairs and 5693 alternative mRNA isoforms.  We categorized 

the alternative mRNAs according to exon and splice site usage (Figure 2.2b ,d).  

Each canonical and alternative isoform is described in a table published as 

supporting material for the PNAS publication.  

We found that many alternative mRNA isoforms have premature 

termination codons that render them apparent targets for nonsense-mediated 

decay (NMD). Recent work has elucidated the following model for mammalian 

NMD (53, 143, 178, 193). During mRNA processing, exon-exon splice junctions 

are marked with exon junction complexes that serve the dual purpose of 

facilitating export to the cytoplasm and remembering gene structure (157). As 

translation occurs, the ribosome displaces all exon junction complexes in its 

path. If a complex remains after a pioneering round of translation (130), a series 

of reactions ensue, leading to transcript degradation. Thus, transcripts that 

contain  

premature termination codons—that is, termination codons more than 50 

nucleotides 5’ of the final exon (121, 130, 143, 157, 177, 178, 204, 266)—are 

candidates for NMD. As Wagner and Lykke-Anderson report, “NMD is a 
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critical process in normal cellular development” (266). NMD has been shown to 

occur in all eukaryotes tested and, though it has variable efficiency (112), 

eukaryotic mRNAs containing premature termination codons are almost always 

degraded rapidly (204). Further supporting this idea, we observed that only 

4.3% of mRNAs from the reviewed category of Refseq are NMD candidates, 

with stop codons located more than 50 nucleotides upstream of the final exon. 

In contrast, we discovered that in 34% of these sequences, the start codon 

occurred downstream of the first exon. 

35% of the EST-suggested alternative isoforms in our study contain 

premature termination codons (Figure 2.2f).  For a subset comprising 74% of 

these NMD-candidate mRNA isoforms, EST alignments cover a premature 

termination codon and a splice junction more than 50 nucleotides downstream.  

In these cases, there is no possibility that additional, undetected splicing events 

might remove 3’ exons, thereby preventing termination from being premature.  

Furthermore, within this subset of NMD-candidates, 83% have premature 

termination codons occur in all three reading frames, thus precluding the 

possibility that an upstream splicing event changed the reading frame from that 

of the canonical form to prevent incorporation of a premature termination 

codon.  Finally, we found that the distribution of predicted polyadenylation 

signals in NMD candidate splices is biased against regions just downstream of 

premature termination codons, undermining the likelihood that alternative 

polyadenylation stabilizes many of the NMD-candidate transcripts. 
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Figure 2.2.  Alternative splice detection and classification.  a, Splice inference.  Coding 
regions of RefSeq mRNAs were aligned to genomic sequence to determine canonical 
splicing patterns.  EST alignments to genomic sequence confirmed the canonical splices 
and indicated alternative splices.  Canonical (RefSeq) splices are indicated above the 
exons, while alternative splices are indicated below the exons.  When an alternative 
splice introduced a stop codon more than 50 nucleotides upstream of the final exon-
exon splice junction of an inferred mRNA isoform, the stop codon was classified as a 
premature termination codon and the corresponding mRNA isoform was labeled a 
NMD candidate.  In the example shown, an exon skip caused a frameshift, resulting in 
the introduction of a premature termination codon.  Restricting the analysis to coding 
regions assured high alignment quality, but this excluded alternative splicing in non-
coding regions, such as occurs with splicing factor SC35.  Intron retentions were also 
excluded, since ESTs indicating intron retention are indistinguishable from 
incompletely-processed transcripts, a common dbEST contaminant.  b, Splice mode 
classification.  Alternative splices were categorized according to splice site usage and 
effects on the coding sequence. Splice sites introduced shows the number of splice 
donor/acceptor sites that were observed in the alternative splice, but were not included 
in the canonical splice.  Splice sites lost shows the number of splice donor/acceptor 
sites that were included in the canonical splice and absent in the alternative splice.  
Coding region change indicates whether an alternative splice added (red) or subtracted 
(green) coding sequence to the alternative isoform relative to the canonical isoform.  By 
our method, mutually-exclusive exon usage appears as exon inclusion.  Our analysis 
excluded intron retentions, which would be classified as:  0 splice sites introduced, 2 
sites lost, and addition of coding sequence.  c, Alternative isoform inference from splice 
pairs.  Splice pairs are splice donor/acceptor sites (▲) inferred from the alignments.  
Alternative splice pairs are those indicated by ESTs, but not by a RefSeq mRNA.  The 
exon composition of an isoform was determined from EST-demonstrated splice pairs, 
which may be covered by multiple ESTs.  Coverage of splice pairs is indicated in each 
▲.  Coverage for a complete isoform is not meaningful because of variability in 
coverage of its splice pairs.  d, Alternative splice pairs by mode and coverage.  The total 
number of alternative splice pairs associated with each splicing mode is shown at 
various levels of EST coverage.  The distance from the y-axis to the right edge of each 
box corresponds to the total number of splice pairs with coverage greater than or equal 
to the number indicated.  Note that each exon inclusion event involves two splice pairs.  
e, Alternative splice pairs generating NMD candidates, by mode and coverage.  The 
subset of alternative splice pairs producing premature termination codons is involved 
in generating NMD-candidate mRNA isoforms.  Numbers of splice pairs are displayed 
as in d.  Also shown are the NMD-candidate splice pairs at coverage ≥1 and ≥2 as a 
percentage of all alternative splice pairs for each splicing mode.  f, Isoforms of 
alternatively-spliced RefSeq-coding genes.  Shown are the total numbers of isoforms of 
the RefSeq-coding genes for which alternative isoforms were found.  These are 
subdivided into the following categories: all isoforms including canonical; alternative 
isoforms (i.e., all isoforms excluding canonical); and NMD candidates.  
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Our analysis identified 1106 genes that undergo alternative splicing to 

generate 1989 alternative mRNA isoforms that are apparent targets for NMD.  

Such widespread coupling of alternative splicing and NMD may indicate that 

the cell possesses a large number of irrelevant mRNA isoforms that must be 

eliminated.  A more compelling alternative, which has been investigated in 

analyses of smg mutations in C. elegans, is that the deliberate coupling of 

alternative splicing and NMD plays a functional role in regulating protein 

expression levels (108, 194, 199).  Supporting this view, our analysis turned up 

several genes known to be regulated by generating isoforms targeted for NMD, 

including GA (151), and FGFR2 (133).  We also found alternatively spliced NMD 

candidates for six other splicing factors.  Besides these, the splicing factor SC35 

has been shown to auto-regulate its expression through RUST by generating 

NMD-targeted isoforms (255), though it is excluded from our analysis because 

its alternative splicing does not affect its coding sequence (Figure 2.2a). 

Additionally, we found that the human genes for 5 translation factors 

and 11 ribosomal proteins generate NMD-candidate isoforms.  Intriguingly, C. 

elegans homologs of three of these ribosomal genes—RP3, RP10a, and RP12—

generate splice forms that are cleared by NMD (194), suggesting that this mode 

of regulating ribosomal protein expression is evolutionarily conserved. 

Experimental work will be necessary to further characterize the role of coupled 

alternative splicing and NMD in the expression of the genes we have identified. 
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Since EST libraries are naturally biased against less stable transcripts, mRNAs 

subjected to NMD should have lower coverage than stable alternative splice 

forms of the same gene.  Therefore, it is striking that many NMD candidates are 

indicated by multiple ESTs (Figure 2.2e).  Within non-normalized, non-diseased-

cell libraries, the fraction of splices that generate NMD candidates with coverage 

one is slightly reduced, and this fraction drops precipitously at higher coverage, 

rendering the quantitation of these data uninterpretable.  In light of transcript 

biases in dbEST and the fact that splicing in the RefSeq 3’ UTR (e.g., in SC35) is 

excluded from our analysis, we suspect that alternative splicing of NMD-

targeted transcripts might be more prevalent than our data suggest.  

The coupling of alternative splicing and NMD is easily incorporated into 

existing models of gene regulation.  It allows use of the intrinsic alternative 

splicing machinery to regulate protein expression in a developmental stage- and 

cell-specific manner.   Moreover, the transcription of genes that will yield 

unproductive mRNAs is no more wasteful than the transcription of introns, and 

particularly for genes that require a long time to be transcribed (e.g., dystrophin, 

which takes 16 hours (258)), post-transcriptional regulation of this sort could 

provide temporal control unattainable by transcription factors.   In light of our 

findings, we reason that the contribution of alternative splicing to proteome 

diversity may be balanced by an as-yet unappreciated regulatory role in gene 

expression. 
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Materials and Methods 

Alternative Isoform Inference 

We examined the alternative mRNAs suggested by EST alignments, using a 

protocol designed to comprehensively identify maximally-reliable sequences 

that are alternatively spliced (Figure 2.2a).  To exclude errors from genome 

sequencing and assembly, and to simplify the task of determining reading frame 

for each transcript, our analysis employed 16163 well-characterized human 

mRNAs from RefSeq and LocusLink (222). This set excludes the computational 

genome annotation Refseq category, as well as 617 mRNAs containing 

premature termination codons (see below, Analysis of premature termination 

codons in RefSeq mRNAs).  First, we mapped the mRNAs to the human 

genome, requiring that an mRNA align to genomic sequence over the full length 

of the coding sequence, without gaps in the exons.  We further required 98% 

identity between the coding sequences, favoring RefSeq sequence in cases of 

nucleotide mismatch.  When multiple RefSeq mRNAs aligned to the same 

region of genomic sequence, we used only the mRNA containing the largest 

number of exons.  To detect alternative isoforms, we aligned 4.6 million EST 

sequences from dbEST (33) to the genomic sequence and used TAP (136) to infer 

alternative mRNA splice forms from these alignments (Figure 2.2c).  Since we 

used known genes, the reading frame of each canonical mRNA isoform (i.e., the 

RefSeq mRNA) was known.  So that the reading frame could be determined for 

all EST-suggested alternative isoforms, we excluded ESTs whose 5’ end aligned 
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to regions of the genomic sequence that did not correspond to coding exons of 

the RefSeq mRNA.  We also excluded cases of intron retention, as these are 

indistinguishable from incompletely processed transcripts, a common dbEST 

contaminant.  After applying these filters for reliability, this protocol identified 

3127 RefSeq mRNAs whose genes undergo alternative splicing to generate 8820 

distinct mRNAs.  Within this set, we have higher confidence in splicing events 

with coverage by multiple ESTs, as these are less likely to result from 

experimental artifacts in dbEST.  The overall process involved the following 

steps: 

Mapping RefSeq mRNAs to the Human Genome 

Annotations from the August 2002 version of LocusLink (222) were used to 

associate 16163 human mRNAs from the August 2002 version of RefSeq (222) 

with contig sequences from the NCBI human genome build 30 (153).  The 

coding regions of the RefSeq mRNAs were aligned against the corresponding 

contig sequences with the mRNA alignment tool SPIDEY (272) (Figure 2.2a).   

Because the untranslated regions of the RefSeq mRNAs often aligned poorly to 

the genomic sequence, we constructed alignments for only the coding portions 

of the RefSeq mRNAs.  Cases where alternative splicing affects the untranslated 

regions of RefSeq-coding genes (e.g., in SC35 (255)) were thus excluded (Figure 

2.2a). 

Aligning EST sequences to genomic sequences.   

Repetitive elements in the genomic template sequences were masked with 
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RepeatMasker (246).  Using WU-BLAST 2.0MP-WashU [07-Jun-2002] (104), we 

searched the 4.6 million EST sequences from dbEST (33) version 280802 for 

matches to the coding exons of the RefSeq mRNA as well as the intervening 

intron sequences in the human genome.  The EST sequences with p-value < 10-30 

were aligned to the genomic sequences using SIM4 1.4 (97).  Only EST 

alignments with >92% identity were used. 

Alternative isoform inference.   

We used TAP (136) to infer alternative mRNA splice forms from the EST  

alignments. 

Alternative Isoform Analysis 

Alternative isoforms were inferred, analyzed, and further filtered as follows: 

Analysis of canonical and alternative splice pairs 

Alternative splice pairs are defined as EST-inferred splice junction donor and 

acceptor sites that differ from those in the canonical RefSeq mRNAs (Figure 

2.2a).  To avoid erroneous alternative splice pair predictions resulting from 

ambiguity in the alignments surrounding splice junctions, we rejected putative 

alternative splice pairs found less than 7 bp from a canonical splice pair.  Each 

aligned EST may indicate multiple alternative and canonical splice pairs.  

Alternative splice pairs within the same mRNA isoform may have varying 

levels of EST coverage (Figure 2.2c).  Whenever a splice in an alternative isoform 

was not covered by ESTs, it was assumed to be canonical.  

Classification of alternative splice pairs 
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Each EST-inferred alternative splice pair was classified according to EST 

coverage (Figure 2.2c), effect on the coding region of the underlying genomic 

sequence, and exon and splice site usage (Figure 2.2d).  By this method, 

mutually exclusive exon usage appeared as exon inclusion.  Note that two 

alternative splice pairs are associated with a single exon inclusion event.  Also, 

exon inclusion may be viewed as exon skipping from the perspective of the 

alternative isoform. 

Classification of alternative splicing modes 

Alternative splices were categorized according to splice site usage and effects on 

the coding sequence (Figure 2.2b), as described in the legend to Figure 2.2. 

Identification of premature termination codons 

Premature termination codons are stop codons that occur more than 50 

nucleotides upstream of the final splice junction (121, 130, 143, 157, 177, 178, 204, 

266).  When an inferred mRNA isoform was found to contain a premature 

termination codon, that isoform was labeled as an NMD candidate.  The 

tendency for alternative splicing to introduce premature termination codons 

may be viewed at the level of alternative splice pairs (Figure 2.2e) or alternative 

mRNA isoforms (Figure 2.2f).  

Analysis of polyadenylation signals 

POLYADQ (256) was used to search the alternative mRNAs for polyadenylation 

sites. On average, a predicted polyadenylation signal occurred once every 2646 

nucleotides in the coding exons of the RefSeq mRNAs and the intervening 
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introns. Regions spanning from a premature termination codon to the first splice 

junction more than 50 nucleotides downstream contained predicted 

polyadenylation signals once every 3187 nucleotides.  

Analysis of premature termination codons in RefSeq mRNAs 

To determine whether premature termination codons exist in experimentally-

identified mRNA transcripts, we examined the occurrence of premature 

termination codons in the set of reviewed Refseq mRNAs from the August 2002 

version of RefSeq (222).  All Refseq mRNAs that are identified as reviewed 

Refseq records have been individually examined by NCBI staff. Thus, these 

sequences represent the most reliable segment of Refseq. The position of the 

termination codon in each reviewed RefSeq mRNA was taken from the RefSeq 

annotation.  The position of the final splice junction was determined using 

spidey (272) to align the mRNA to a NCBI human genome build 30 contig 

sequence that had been associated using LocusLink (222).  If the stop codon of 

the RefSeq mRNA was found more than 50 nucleotides upstream of the final 

splice junction, then the stop codon was identified as a premature termination 

codon. 

Selection of non-normalized, non-diseased-cell EST libraries 

We used UniLib library annotations to construct a restricted set of EST libraries 

(129). The keyword “protocol”, type “non-normalized” was used to search the 

classification hierarchy for non-normalized libraries.  The keyword “histology”, 

type “normal” was used to identify libraries constructed by sequencing non-
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diseased tissue.  We took ESTs in the intersection of these two subsets as being 

from non-normalized, non-diseased-cell libraries. 
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CHAPTER 3 
 

Even curated databases contain protein isoform sequences derived from 
mRNAs likely degraded by NMD 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  Much of the material presented in this chapter was included in the 
publication: 
 
Hillman RT, Green RE, and Brenner SE (2004).  An unappreciated role for RNA 
surveillance Genome Biology. 5(2):R8. 
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Background 

Alternative pre-mRNA splicing endows genes with the potential to produce a 

menagerie of protein products.  After pre-mRNA is transcribed, a complex 

system of regulation determines which one of several possible versions of 

mature mRNA will be produced (reviewed in 29).  Alternative splicing is 

particularly important in human gene expression, as it affects half or more of 

human genes (137, 195).  The diversity-generating capacity of alternative 

splicing can be staggering:  one notable example, the dscam gene of Drosophila 

melanogaster, is hypothetically capable of producing 38,016 unique alternative 

isoforms (58).  However, functional roles for most alternative isoforms remain 

undiscovered. 

It has been known for more than a decade that nonsense and frameshift 

mutations that induce premature termination codons can destabilize mRNA 

transcripts in vivo (146, 161).  First investigated in yeast and humans, NMD was 

subsequently observed in a wide range of eukaryotes and is now thought to 

occur in all eukaryotes (98).  How cells manage to distinguish a premature 

termination codon from a normal termination codon has been the subject of 

intense investigation.  Important details have emerged that establish the 

following mechanistic framework model for NMD in mammals. 

During pre-mRNA processing, the spliceosome removes intron 

sequences.  As this occurs, a set of proteins called the exon-junction complex is 

deposited 20-24 nucleotides upstream of the sites of intron removal (157, 158, 
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178, 226).  The components of this complex serve the dual roles of facilitating 

export of the mature mRNA to the cytoplasm and remembering the gene 

structure (156).  According to the current model, as a ribosome traverses the 

mRNA in its first pioneering round of translation, it displaces all exon-junction 

complexes in its path (43, 84, 130, 181).  For normal mRNAs, whose termination 

codons are on or near the final exon, the ribosome will have displaced all 

exon-junction complexes.  If any exon-junction complexes remain, a series of 

interactions ensues that leads to the decapping and degradation of the mRNA.  

This model explains the basis of the “50 nucleotide rule” for mammalian NMD: 

if a termination codon is more than about 50 nucleotides upstream of the final 

exon, it is a PTC and the mRNA that harbors it will be degraded (204).  The 

mechanisms for NMD differ amongst yeast (107), flies (101), and mammals—

and may be different still in other eukaryotes. 

Degradation of PTC+ mRNAs is generally thought to occur as a quality-

surveillance system—preempting translation of potentially dominant-negative, 

C-terminal truncated proteins (48).  PTC+ transcripts are aberrantly produced in 

several ways.  The somatic recombination that underlies immune system 

diversity frequently generates recombined genes whose transcripts contain a 

PTC (169).  Inefficient or faulty splicing will often generate a frameshift in the 

resulting mRNA, inducing a PTC to come into frame.  Also, high processivity of 

RNA polymerase yields a relatively high error rate, 1 in 10,000 bases (4, 35), 

commonly introducing premature stops.  DNA mutations are a source of 

 34 
 

 



potentially heritable PTCs.  It is estimated that 30% of inherited disorders in 

humans are caused by a PTC (266).  The numerous diseases whose pathogeneses 

have been linked to NMD-inducing PTC mutations include aniridia from the 

PAX6 gene (265), Duchenne Muscular Dystrophy from the Dystrophin gene 

(141), and Marfan syndrome from the FBN1 gene (128). 

In addition to its quality-control role in degrading aberrantly produced 

PTC+ mRNAs, NMD has also been experimentally shown to act on a handful of 

wild-type PTC+ mRNAs (152, 155, 165, 194, 199, 255, 274).  In C. elegans, for 

example, expression of the ribosomal proteins L3, L7a, L10a, and L12 and the SR 

proteins SRp20 and SRp30b are regulated post-transcriptionally via the coupling 

of alternative splicing and NMD (194, 199).  In each case productive isoforms 

were shown to be produced in vivo, as well as unproductive isoforms with a 

PTC.  Regulated splicing to generate the unproductive isoforms is used as a 

means to down-regulate protein expression, as these mRNA isoforms are 

degraded by NMD rather than translated to make protein.  This system, which 

we have termed regulated unproductive splicing and translation (RUST) is also 

used in humans (152, 255, 274).  For example, the SR-protein SC35 has been 

shown to auto-regulate its own expression using RUST (255).  When levels of 

SC35 protein are elevated, SC35 binds its own pre-mRNA, inducing the 

production of PTC+ SC35 mRNA.  The PTC+ SC35 mRNA is destabilized by 

NMD, resulting in lower levels of SC35 protein.  A similar auto-regulatory rust 

system was also recently discovered to control production of PTB (275).  
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In a previous study, we found that 35% of reliable EST-inferred human 

mRNA alternative isoforms are PTC+, rendering them apparent targets of NMD 

(110, 168).  Therefore, many wild-type alternative mRNA isoforms may not be 

translated into functional protein, but instead are targeted for degradation by 

NMD.  The vast majority of PTC+ isoforms identified in that study represent 

previously unrecognized potential targets of NMD.  However, EST databases 

contain expressed sequence for many isoforms that are otherwise 

uncharacterized.  Therefore, it was not obvious how many of the isoforms 

identified in that study as PTC+ were functionally relevant or even previously 

known.  It was also not obvious to what extent those PTC+ isoforms represented 

instances of rust regulation or simply errors in pre-mRNA processing.  

Regardless, it is clear that NMD has a vital role in regulating mammalian gene 

expression, since inhibition of NMD is embryonic lethal for mouse (186). 

To understand the biological significance of PTC+ isoforms and the 

prevalence of NMD on wild-type transcripts, it is necessary to expand beyond 

existing isolated rust examples, while retaining a focus on functionally 

characterized genes.  For this reason, we analyzed the human alternative 

isoforms described in the SWISS-PROT database.  Common routes for gene 

isoform sequences to be determined and entered into databases include the 

cloning of intronless mini-genes and the sequencing of unexpected PCR bands.  

By either method, gene structure can not be directly observed, and therefore 

PTCs may be overlooked.  Further computational and experimental analyses 
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will also often be oblivious to these features.  Because the cloning and 

characterization of many isoforms predates our current understanding of NMD 

action, we hypothesized that unrecognized potential targets of NMD may be 

present even in curated databases like SWISS-PROT.  We found that many of these 

alternative protein isoforms derive from PTC+ mRNAs.  This is particularly 

surprising as SWISS-PROT is a heavily curated database of expressed protein 

sequences.  According to the current NMD model, these PTC+ mRNAs should 

be degraded and therefore the protein isoforms should not be expressed at high 

abundance.  To resolve this apparent conflict, we examined existing 

experimental evidence and found that, in several cases, results described in the 

scientific literature are readily explained by NMD action. 

 This project grew out of a desire to identify high interest targets for 

experimental verification. Tyler Hillman and I initially began by manually 

perusing SWISS-PROT for experimentally described isoforms that were likely 

targets of NMD that were also of scientific or medical interest. Tyler and I jointly 

conceived of the protocol outlined in Figure 3.1 and jointly implemented it. I 

performed the cross-species analysis of CLKs and we jointly authored the 

manuscript. 

Results and Discussion 

We examined the human alternative isoforms described in the SWISS-PROT 

database (32) to determine if any derive from PTC+ mRNA (see Materials and 

Methods).  For each alternative human protein isoform sequence in SWISS-PROT,  
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Figure 3.1 Many human alternative isoforms in SWISS-PROT derive from PTC+ 

mRNAs. (a) We analyzed each of the human SWISS-PROT entries containing a 

VARSPLIC line in its feature table, using this information to assemble protein isoform 

sequences. Ambiguous VARSPLIC entries led us to discard five entries from our 

analysis at this point. (b) We next identified cDNA/mRNA sequences corresponding to 

each protein isoform assembled from SWISS-PROT. BLAST was used to align each 

protein isoform sequence to translated cDNA/mRNA sequences in GenBank and 

Refseq, filtering to ensure only high confidence matches. To obtain the coding sequence 

of each mRNA/cDNA sequence, we used LocusLink to map each to the correct human 

genomic contig sequence from the NCBI human genome build 30. We referred to the 

CDS feature of each GenBank or RefSeq cDNA/mRNA record to identify stop codon 

locations. (c) We used the SPIDEY mRNA-to-genomic DNA alignment program to 

determine the gene structure of each mRNA/cDNA isoform sequence. After generating 

these gene structures, we could determine the PTC+ status on the basis of stop codon 

location relative to exon-exon junctions. If the termination codon was found to be more 

than 50 nucleotides upstream of the final intron, the transcript was deemed PTC+ and 

designated a candidate target of NMD according to the model of mammalian PTC 

recognition. (d) Each putative PTC+ isoform was manually inspected for errors in gene 

structure prediction. These errors include false exon predictions due to poly(A) tails 

and cDNA/mRNA sequence not seen in the corresponding genomic sequence.
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we attempted to identify a corresponding cDNA/mRNA sequence in GenBank 

(25) or RefSeq (222).  As shown in Figure 3.1, 2742 isoform sequences from 1463 

SWISS-PROT entries could be reliably mapped to a cDNA/mRNA sequence.  

Next, we aligned each cDNA/mRNA sequence to the corresponding region of 

genome sequence using the SPIDEY program (272).  The SPIDEY output was 

analyzed to identify the position of introns in each gene.  To determine which 

cDNA/mRNA sequences have PTCs according to the 50 nucleotide rule for 

NMD, the position of the termination codon as reported in each GenBank or 

RefSeq file was compared to the position of the introns.  Of 2483 alternative 

isoforms from 1363 SWISS-PROT entries that passed quality filters, 144 isoforms 

(5.7% of 2483) from 107 entries (7.9% of 1363) were found to have PTCs, making 

them candidate targets of NMD.  We also found that SWISS-PROT entries that 

contain multiple alternative isoforms amenable to our analysis were more likely 

to contain at least one PTC+ isoform (Figure 3.2).  The complete list of PTC+ 

alternative isoforms we identified in this analysis, along with their SWISS-PROT 

accession numbers and cDNA/mRNA identifiers, are shown in Appendix A.  In 

the supplementary information to the Genome Biology manuscript, we have 

provided the spidey alignment for each of the isoforms we identified as PTC+. 

Next, we examined existing reports for experimental evidence that would 

refute or support action of NMD on these PTC+ isoforms.  We found that 

published descriptions of these PTC+ isoforms sometimes do describe the 

isoforms as containing premature termination codons.  However, these articles  
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amenable to our analysis and then determined how many contained at PTC. Each bar shows the 
number of PTC+ isoforms generated for all SWISS-PROT entries that had the indicated number 
of isoforms amenable to analysis. Bar components indicate how many entries had a given number 
of PTC+ isoforms. For example, the bar labeled ‘3’ contains data for the 113 SWISS-PROT 
entries that had 3 isoforms amenable to analysis. 86% of these had no PTC+ isoforms, 10% had 
one PTC+ isoform, and 4% had 2 PTC+ isoforms. The bar components outlined in green were 
SWISS-PROT entries for which all amenable isoforms had a PTC. Entries with multiple isoforms 
amenable to analysis were more likely to produce at least one PTC+ isoform. This study only 
considered entries with at least two isoforms in the SWISS-PROT database. For many entries 
only a single isoforms is amenable to analysis, however. 
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almost universally lack any mention of NMD, even as they often describe data 

that is suggestive of NMD action.  Amongst the many well-characterized 

proteins found in our study to have at least one PTC+ splice variant, three 

examples demonstrate how previously published experimental results may be 

interpreted in light of NMD degradation of alternative mRNA isoforms. 

Calpain-10 

Calpain-10 is an ubiquitously expressed protease that is alternatively spliced to 

produce eight mRNA isoforms (125), found in SWISS-PROT as Q9HC93.  Calpain-

10 is an intensely studied gene because a polymorphism in its third intron, 

UCSNP-43, has been linked to Type-II diabetes in several populations.  Because 

this polymorphism lies in intronic sequence it does not directly affect the coding 

potential of any isoform of Calpain-10.  It was shown that homozygosity of 

UCSNP-43 leads to reduced levels of total Calpain-10 transcript and is co-

incident with insulin resistance in skeletal muscle (17).  Previous investigations 

into how this polymorphism affects transcript abundance have centered on 

transcriptional regulation (125, 279). In an expression study, Horikawa et al. 

found four of the eight isoforms to be “less abundant.”  It is these same four 

mRNA isoforms that we found in our survey of swiss-prot to be PTC+, 

suggesting that NMD may be responsible for this experimental observation 

(Figure 3.3).  This introduces the possibility that UCSNP-43 may affect the 

regulation of Calpain-10 alternative splicing, favoring production of one or 

more of the PTC+ isoforms.    
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Figure 3.3 Published expression levels of calpain-10 isoforms are consistent with NMD predic-
tion. (a) A report from Horikawa and co-workers found eight alternative isoforms of calpain-10, 
of which four are expressed in low abundance. Our analysis found this exact set of four low 
abuncance isoforms to contain PTCs. (b) Gene structures of alternative mRNA isoforms of 
calpain-10 show the patterns of alternative splicing and indicate locations of PTCs. Also shown is 
the position of UCSNP-43, an intronic polymorphism that has been statistically linked to type II 
diabetes susceptibility in a variety of populations.
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CDC-like Kinases CLK1, CLK2, and CLK3 

CLK1, CLK2, and CLK3—three members of the CDC-like kinase family (also 

known as LAMMER kinases and STY kinases; SWISS-PROT entries P49759, 

P49760, P49761)—were found to have at least one PTC+ splice variant.  CLKs are 

thought to be high-level regulators of alternative splicing, as CLK1 has been 

shown to activate a set of SR-proteins by phosphorylating them (86, 87, 190).  

The pattern of alternative splicing of each CLK paralog was found to be the 

same: a full-length isoform, and an isoform that skips exon 4 (113).  We found 

that in each case, skipping exon 4 induces a frameshift that creates a PTC 

(Figure 3.4a).  The conceptual translations of these PTC+ isoforms, described as 

“truncated,” lack most of the coding region including the kinase domain. 

Having observed conservation amongst the human paralogs, we 

examined the gene structures of the mouse orthologs of each CLK (Figure 3.4b) 

to determine if the pattern was shared across species.  We identified mouse 

orthologs via existing RefSeq database annotation.  EST evidence of alternative 

splicing showed that all three mouse CLK orthologs showed the same pattern of 

alternative splicing, skipping exon 4 to induce a PTC, as seen in the human 

CLKs.  The significance of this evolutionary conservation is underscored by the 

recent finding that alternative exons are “mostly not conserved” between 

human and mouse (196).  For the CLK genes, the alternative exons and the 

introns flanking them are amongst the most highly similar regions of these 

genes (Figure 3.4). 
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Figure 3.4 Splicing to generate a premature termination codon is evolutionarily 

conserved in CLKs. The CDC-like kinases (CLKs) are splicing regulators that affect 

splicing decisions through the phosphorylation of SR proteins. (a) Our screen of  

SWISS-PROT revealed that human CLK1, CLK2 and CLK3 paralogs all generate PTC+ 

alternative isoforms. The splicing pattern that generates these isoforms, skipping exon 

4, is conserved in each. This splicing pattern causes a frameshift and a PTC. The percent 

identities from global alignments between corresponding exons and introns are shown 

in purple. (b) CLKs were identified in mouse through existing annotation and in the 

predicted genes of the sea squirt C. intestinalis using an HMM constructed with 

annotated CLKs from a variety of organisms. An EST analysis revealed that the 

alternative splicing pattern that generates PTC+ alternative isoforms was conserved in 

all three sets of orthologs in human and mouse. The same splicing pattern was also 

found in the only C. intestinalis homolog. A relatively high degree of sequence 

similarity was found to be present in the introns flanking the alternative exon.
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We next searched for evidence of more distant conservation of CLK 

alternative splicing.  We identified the single sea squirt CLK homolog by using a 

hidden Markov model of CLKs to search the C. intestinalis genome (see 

Materials and Methods).  EST evidence clearly indicated that the same 

alternative splicing pattern seen in human and mouse is also conserved in C. 

intestinalis.  We were not able to observe a set of similar splicing patterns in 

Drosophila melanogaster (data not shown). 

Menegay and co-workers “tested whether expression of CLK1 splice 

products was subject to regulation by cellular stressors” (190).  They found that 

“UV exposure or high salt conditions had no effect on the ratio of full-length to 

truncated splice forms of CLK1. Cycloheximide however had a large effect, 

changing the ratio dramatically in favor of the truncated kinase-less form of 

mRNA” (Figure 3.5).  Cycloheximide, a chemical inhibitor of translation, is 

known to inhibit NMD (54), because NMD is a translation-dependent process.  

Indeed, cycloheximide is now a commonly used reagent for NMD-inhibition 

experiments (e.g., 152, 163, 207).  Combined with our finding that the 

“truncated” mRNA isoform possesses a PTC, the results of Menegay et al. can 

be readily explained: the increased abundance of the “truncated,” PTC+ isoform 

following cycloheximide treatment is likely the result of inhibiting NMD, which 

normally degrades it. 

CLK1 has been shown to indirectly affect its own splicing (86):  the 

presence of high levels of CLK1 protein favors generation of the “truncated,”  
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Figure 3.5 Cycloheximide increases abundance of CLK1 PTC+ isoform. (a) Gene structures of 
CLK1 full-length and PTC+ isoforms as determined by ouranalysis. (b) Menegay et al. (190) 
performed the RT-PCR analysis of CLK1 isoforms; Figure 8 of that analysis [48] is reproduced 
here with permission (© Company of Biologists Ltd.). The 560 bp fragment corresponds to the
full-length CLK1 isoform; the 453 bp fragment corresponds to the PTC+ CLK1 isoform. The 
analysis shows that cycloheximide, but not UV irradiation or high salt (data not shown), 
increased the relative abundance of the CLK1 isoform containing a premature termination 
codon. As cycloheximide is a potent inhibiter of NMD (see, for example, [28,51-53]), this result 
suggests that the CLK1 PTC+ isoform is degraded by NMD. Menegay et al. [48] describe their 
figure as follows: "Shift in PCR products of splice forms with cycloheximide. Control or PC12 
cells treated with 10 μg/ml cycloheximide for 60 minutes were harvested, RNA was extracted, 
and RT-PCR was performed. [...] PCR products of the 560 bp full-length form or the 453 
kinase-less form of CLK1 message shown. [...] PCR of GAPDH controls from each sample to 
control for RNA loading."
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PTC+ splice variant.  However, instead of coding for an inactive, truncated 

protein isoform, we propose that this PTC+   mRNA isoform may be simply 

degraded by NMD.  Auto regulation of this type would be analogous to that 

seen for the splicing factors SC35 (255) and PTB (275).  Both SC35 and PTB 

proteins promote the alternative splicing of PTC+ isoforms of their own mRNAs 

that are then degraded by NMD. 

LARD/TNFRSF12/DR3/Apo3 

Death domain-containing receptors like LARD (also known as TNFRSF12, DR3, 

and Apo3; swiss-prot entry Q99831) are known to regulate the balance between 

lymphocyte proliferation and apoptosis (261).  The term “death domain” refers 

to a conserved intracellular region found in receptors like Fas and TNFR-1 that 

is capable of inducing apoptosis while in the presence of a particular ligand (in 

these cases, FasL and TNF1 respectively).  The regulation of functional death 

receptor expression is important in maintaining the balance between 

lymphocyte proliferation and apoptosis in vivo. 

LARD is alternatively spliced to produce 12 isoforms (239).  There is one 

full-length isoform that encodes a death-domain and its expression is pro-

apoptotic.  Many of the 11 other isoforms, whose functions are unclear, do not 

encode the death domain.  In a study of differential expression of LARD in 

unstimulated and activated lymphocytes, Screaton and co-workers found that 

“…there is no change in overall LARD expression in different lymphocyte 
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subsets” (239).  Although total expression levels were unchanged, the pattern of 

alternative splicing changed dramatically (Figure 3.6).  Unstimulated 

lymphocytes expressed five “truncated” isoforms, but very little of the full-

length isoform.  They found that, “After lymphocyte activation, there is a 

complete switch in splicing that will expose PHA-blasted [activated] cells to the 

risk of apoptosis triggered through LARD…. The splicing pattern reverses after 

PHA blasting when isoforms encoding the truncated molecules are much 

reduced and LARD-1 predominates.” 

We found that the five “truncated” LARD mRNA isoforms expressed in 

unstimulated lymphocytes all have PTCs (isoforms 2, 3, 4, 5, and 6).  [Note: 

SWISS-PROT uses a different numbering scheme in which isoforms 2-6 are known 

as 12, 3, 5, 6, and 7, respectively.]  Only the full-length apoptosis-promoting 

isoform 1, expressed in activated lymphocytes, is free of a PTC.  Though there is 

presently no evidence of transcript degradation, this precise correlation between 

PTC-containing isoform expression and lymphocyte activation suggests that 

alternative splicing’s role in regulating lymphocyte apoptosis may be mediated 

by NMD. 

Conclusions 

We found that 144 of the human alternative isoforms described in SWISS-PROT 

derive from mRNAs that contain PTCs.  These mRNAs are apparent targets for 

NMD, and we expect that most are degraded by this system.  In many cases, 

existing experimental evidence is consistent with this expectation.  Because our  
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Figure 3.6 LARD/TNRRSF12/DR3/Apo3 expression correlates with PTC+ status. LARD is an 
alternatively spliced death-domain-containing member of the tumor necreosis factor receptor 
family (TNFR). However, only the major splice variant (isoform 1) contains the death domain and 
is capable of inducing apoptosis. The splicing distribution of LARD isoforms has been shown to 
change on lymphocyte activation, suggesting that alternative splicing may be a control point 
regulating lymphocyte proliferation. (a) Screaton et al. showed that, before lymphocyte activation, 
only LARD isoforms 2, 3, 4, 5 and 6 are expressed. Primary blood lymphocytes treated with an 
activating agent were found instead to express the major, apoptosis-promoting splice variant
(isoform 1) almost exclusively. This panel is reproduced with permission from Figure 6a of (239) 
(© National Academy of Sciences). Screaton et al. (239) describe their figure as follows: "South-
ern blots of reverse transcriptase-PCR of LARD cDNA with primers F LARD Kpn and R LARD 
Xba probed with 32P-labeled primer F LARD Xba. Lanes: 1, CD4+ cells; 2, CD8+ cells; 3, B 
cells; 4 PHA-blasted PBL; 5, negative control." (b) LARD isoforms 2, 3, 4, 5 and 6 were found in 
our analysis of SWISS-PROT to have PTCs, rendering them potential targets of NMD. The 
precise correlation between LARD isoform expression and PTC+ status hints that there may be a 
role for alternative-splicing-induced NMD. Here, the gene structures of these five isoforms are 
shown alongside that of the full-length LARD isoform (isoform 1). In each case, the location of 
the stop codon has been labeled and, where appropriate, isoforms have been denoted as PTC+.
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analysis was restricted to only human entries and many SWISS-PROT records 

could not be reliably analyzed, it is likely that there remain more unidentified 

putative NMD targets.  We are beginning a collaborative project with SWISS-PROT 

to identify and suitably annotate these entries.  The relevance of this effort is 

highlighted by the many instances in which existing experimental data can be 

explained in light of NMD action. 

 
Materials and Methods 

SWISS-PROT isoform extraction and assembly 

We analyzed each of the 1641 SWISS-PROT v.41 human entries containing a 

VARSPLIC line in its feature table (32).  Information contained in each VARSPLIC 

line was used to assemble protein isoform sequences for 4556 isoforms from 

1636 unique SWISS-PROT entries.  5 entries could not be analyzed due to 

ambiguous VARSPLIC annotation. 

Identification of corresponding cDNA/mRNA sequences 

Although SWISS-PROT contains cross-references to cDNA/mRNA sequences for 

major protein isoforms, cross references do not exist for many alternative 

isoforms.  To find the cDNA/mRNA sequence corresponding to each SWISS-

PROT protein isoform, we used BLAST version 2.2.4 (12) to align each protein 

isoform sequence to translated cDNA/mRNA sequences from all GenBank (25) 

and RefSeq cDNA/mRNA sequences in these databases as of 22 March 2003 

(222).  In these alignments, we required ≥99% identity over the full length of the 
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SWISS-PROT isoform.  In cases of multiple matches, we selected 100% identical 

matches over 99% identical matches and RefSeq matches over GenBank 

matches.  For SWISS-PROT isoforms matching multiple entries from the same 

database at the same percent identity, the match associated with the longest 

cDNA/mRNA sequence was chosen.  These rules associated 2871 alternatively 

spliced human SWISS-PROT protein isoforms from 1496 SWISS-PROT entries with a 

corresponding cDNA/mRNA sequence from either RefSeq or Genbank. 

Retrieving coding sequences and genomic loci 

We used LocusLink (222) to map each cDNA/mRNA sequence to the correct 

human genomic contig sequence from the NCBI human genome build 30 (153).  

The CDS feature of each GenBank or RefSeq record was used to identify the 

location of the termination codon.  Of the 2871 alternatively spliced human 

SWISS-PROT protein isoforms we associated with corresponding cDNA/mRNA 

sequences, 2742 had GenBank or RefSeq records that were not polycistronic, 

allowing us to unambiguously extrapolate termination codon location for these 

records.  These 2742 alternative isoforms represented 1463 unique SWISS-PROT 

entries. 

Assessing NMD candidacy 

The SPIDEY mRNA to genomic alignment program (272) was used to determine 

the location of introns in each cDNA/mRNA alternative isoform sequence.  

SPIDEY takes as input a cDNA/mRNA sequence and the corresponding genomic 

sequence, and it generates an alignment that establishes the gene structure.  Of 
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the 2742 alternatively spliced human swiss-prot protein isoforms for which both 

a cDNA/mRNA sequence and stop codon location could be identified, 2483 

resulted in high-confidence SPIDEY alignments, leading us to discard 259 from 

our analysis.  These 2483 isoform sequences represented 1363 unique SWISS-PROT 

entries.  We compared the intron positions to the position of the termination 

codon for each remaining cDNA/mRNA alternative isoform sequence.  If the 

termination codon was found to be more than 50 nucleotides upstream of the 

final intron, we deemed the transcript to be PTC+ and a candidate target for 

NMD according to the model of mammalian PTC recognition (181).  177 

alternatively spliced human isoforms from 130 SWISS-PROT entries were 

identified as possible PTC+ splice variants using these criteria.  These 

predictions required further screening, however, to confirm the veracity of the 

SPIDEY alignments upon which they were based. 

We manually reviewed all 177 putatively PTC+ alignments and discarded 

33 because of demonstrable errors in the SPIDEY alignments.  These errors 

included a variety of malformed intron predictions and polyA tails mistakenly 

annotated as 3’ exons.  Isoforms that remained following the application of these 

manual filters were deemed high confidence PTC+ mRNAs.  This was the case 

for 5.7% of the isoforms (144 of 2483) from 7.9% of the unique SWISS-PROT entries 

studied (107 of 1363).  The SPIDEY alignment for each of these is included as 

supporting information. 
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CLK analysis 

Human CLK1, CLK2, and CLK3 (swiss-prot IDs P49759, P49760, and P49761) 

were among those SWISS-PROT entries we selected for further examination.  They 

were mapped to RefSeq and GenBank entries, as shown in Figure 3.1.  

LocusLink was used to associate each CLK gene sequence to its corresponding 

genomic contig.  For each gene, SPIDEY version 1.35 was run twice, using the 

vertebrate splice-site setting, to align it with its contig sequence and determine 

its gene structure.  This first SPIDEY alignment was used to define the extent of 

each gene’s locus:  the region containing all the coding sequence, introns, and 

1000 nucleotides of flanking sequence on each side.  The second SPIDEY 

alignment was made using just this locus.  Custom scripts (available from the 

authors on request), GFF2PS (1), and manual editing were used to generate the 

graphical representations of the gene structures shown in Figure 3.4.  Intron and 

exon sequences were then extracted using the SPIDEY results to delineate exon 

and intron boundaries.  Corresponding exons and introns were globally aligned 

using ALIGN version 2.0u (203) with default parameters. 

Mouse CLKs were identified using RefSeq annotation (NM_009905—

which skipped exon 4 and had a PTC, NM_007712, and NM_007713).  Genomic 

loci sequences were generated and gene structures determined for each mouse 

CLK gene using SPIDEY, as above.  The loci sequences were then used to search 

the mouse ESTs from dbEST (1 May 2003) (33) using WU-BLAST 2.0mp [23-May-

2003] (103) with default parameters.  Hits with E-values of 10-30 or better were 
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aligned to the locus sequence using SPIDEY.  These alignments were examined 

for evidence of PTC-inducing alternative splicing.  The GI numbers for ESTs 

that demonstrated the alternative splicing pattern shown in Figure 3.4 for each 

of the mouse CLKs are:  CLK1 (full-length): 25118521, 21852543, 12560958, and 

others; CLK2 (exon 4 skipping): 22822098; CLK3 (exon 4 skipping): 26079129. 

The C. intestinalis CLK homolog was identified from the database of predicted 

peptides 

(ftp://ftp.jgi-psf.org/pub/JGI_data/Ciona/v1.0/ciona.prot.fasta.gz) (80) by 

searching (HMMSEARCH v2.2g) (89) with a HMMER model of known CLKs.  This 

model was generated using HMMBUILD (default parameters) and calibrated 

using HMMCALIBRATE from a CLUSTALW v1.83 (262) alignment of the following 

CLK sequences: NP_004062, NP_003984, NP_003983, NP_031738, BAB33079, 

NP_031740, NP_065717, AAH43963, NP_599167, NP_031739, NP_477275, 

EAA12103, NP_741928, BAB67874, and NP_850695.  The most significant hit (E-

value: 4.4e-243) from C. intestinalis was ci0100143784.  Visual inspection of other, 

less significant hits revealed that they align with only the kinase domain of the 

CLK model and none contains the LAMMER motif characteristic of CLKs.  A 

maximum-likelihood tree was generated using PROTML v2.3b3 (2) using 

ci0100143784 and the three full-length human CLKs.  This tree revealed that the 

C. intestinalis CLK is orthologous to human CLK2.  The corresponding cDNA 

transcript sequence, ci0100143784, was retrieved from the database of predicted 

transcripts: 
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(ftp://ftp.jgi-psf.org/pub/JGI_data/Ciona/v1.0/ciona.mrna.fasta.gz). 

As above, the locus for this gene was extracted from the genomic contig 

sequence, Scaffold18, and used to search the database of C. intestinalis ESTs.  The 

following ESTs showed the full-length pattern with no PTC: 24144377, 24820603, 

24627564, 24627468, 24866887, and 2482449.  The following ESTs showed the 

alternatively-spliced pattern that generates a PTC: 24888181, 24606693, 

24823992, and 24893089. 

The C. intestinalis CLK gene was found to have only 11 exons while 

human and mouse CLK2 have 13.  To determine which exons were homologous, 

we generated a CLUSTALW multiple-sequence alignment of the known CLK 

protein sequences listed above and C. intestinalis CLK and we used this 

alignment to identify corresponding regions of DNA sequence.  This 

unambiguously indicated the exon to exon alignment shown in Figure 3.4. 
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CHAPTER 4 
 

Discussion of regulated unproductive splicing and translation 
and future directions 
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 In the time since we published evidence describing the widespread 

coupling of alternative splicing and NMD, the implications of these results in 

the fields of alternative splicing and NMD have begun to be explored. In this 

chapter, I will summarize some of this work and describe some promising areas 

for future exploration. 

For alternative splicing, one major ramification is that all observed 

mRNA isoforms can no longer be safely assumed to code for significant levels of 

protein, as they often were previously. Regarding NMD, our result supports the 

view that NMD is not always simply a quality control mechanism on pre-

mRNA processing. Rather, proper regulation of many genes requires NMD and 

this may explain the lethal UPF1-null phenotype in mammals. Finally, 

awareness of RUST has impacted theories of the evolution of alternative splicing 

and the evolve-ability of spliced genes. A new view has emerged in which NMD 

provides a backstop against which alterations in pre-mRNA processing can be 

safely explored by evolution with muted negative fitness effects. 

RUST implications on alternative splicing 

Many scientific advances do not answer existing questions, but rather cause us 

to ask different questions. The realization that scores of alternative mRNA 

isoforms are shunted into the mRNA degradation pathway is one such case. It is 

now reasonable to ask, for any given mRNA isoform, whether its role is to code 

for protein or not. More generally, given the amount of splicing that appears to 

be futile in the sense that it generates unproductive mRNA isoforms, it now 
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seems reasonable to ask which and how many specific mRNA isoforms 

represent functional forms, either as protein-coding mRNA or as unproductive 

isoforms, and which are simply the product of the biochemical noise inherent in 

splicing. These questions are beginning to be addressed now and should 

continue to be the foci of future work. 

Assessing the functional impact of alternative splicing 

 
Several large-scale studies have been carried out, both before and after the 

publication of our RUST model, to assess the impact of alternative splicing at 

the protein-coding level. One major goal of these surveys is to discover any 

large-scale trends in genes that are alternatively spliced. Specifically, does 

alternative splicing occur more or less often in any specific classes of genes? Or, 

are there any recognizable trends in the effects of alternative splicing in domain 

architecture? 

 We performed an analysis of this type of alternative isoforms described 

in the SWISS-PROT database. After mapping regions of alternative splicing and 

structural domains onto alternative isoforms, we assessed whether there was 

overlap in these regions beyond what one would expect by chance (see 

Appendix B). Interestingly, we found that alternative splicing is biased against 

interrupting structural domains (Figure 4.1) as alternatively spliced regions 

overlap structural domains less often than would be expected if the two were 

arranged independently. This result was subsequently corroborated and 

published (149). Although the effect does not appear to be strong, it is consistent  
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with the presumption that alternative splicing often generates functionally 

distinct protein products by altering the domain constituents present within 

isoforms. In light of our PTC analysis of human SWISS-PROT isoforms, it will be 

interesting to see if the correlation between structural domains and alternatively 

spliced regions is changed when only productive isoforms are considered. 

Perhaps many unproductive mRNA isoforms, whose only function is to be 

degraded by NMD or that have no function, are introducing noise into this 

analysis. These isoforms should be under no constraint with respect to the 

alternately spliced regions/domain boundaries correlation. 

 Large scale analyses of the impact of alternative splicing on the 

functionality of isoforms have also been carried out. In several cases conclusions 

were made that should be reconsidered in light of the RUST model. The RIKEN 

analysis of 60,770 mouse cDNAs is one such example (208). The RIKEN team of 

curators found that many cases of alternative splicing generated truncated 

isoforms (286, 287). They reckoned the role of these mRNAs was to code for 

either inactive or dominant negative protein products. They also observed 

significant amounts of alternative splicing within 3’ UTR regions, which were 

not explored further. These isoforms may be PTC+ and the expression of these 

genes may be under RUST regulation. The current set of 103,000 mouse cDNAs 

has been analyzed for PTC+ forms and many were found to be PTC+ (data not 

shown). 
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 A large scale study of which domains are affected by alternative splicing 

was recently carried out by Liu and Altman (173). Using gene ontology (GO) 

annotations they found that several classes of domain were more likely to be 

impacted by alternative splicing. Among these were protein kinase, caspase, 

and tyrosine phosphatase domains. Interestingly, they found that in 28% of the 

instances they analyzed, these domains were removed by alternative splicing 

events that induce a frameshift and truncate the open reading frame. Obviously, 

many of these would also contain a PTC. For the PTC+ isoforms, interpreting 

biological function based on the protein coding potential may lead to false 

conclusions. 

 Thankfully, recent studies have largely been mindful of our new 

understanding of the role of NMD in alternative splicing. In addition to our own 

work, analyses of alternative splicing effect on transmembrane regions (278), 

domain composition (228) and domain composition of brain-expressed genes 

(124) have been published that take account of the potential for RUST 

regulation. Additionally, we were asked to participate in the most recent RIKEN 

mouse cDNA analysis: FANTOM III. Using the gene structure models 

determined upstream in the analysis, we checked the PTC status of all cDNAs 

amenable to analysis. We found the level of PTC incorporation in this set to be 

comparable to mouse GenBank isoforms in general. 
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Assessing alternative splicing for functionality 

Because many mRNA isoforms are likely targets for degradation by NMD, the 

possibility exists that many of these may be irrelevant, non-functional forms. To 

determine if a feature of a gene or its expression is functional, it is often 

instructive to use inter-species comparative analysis with the simple rationale 

that conserved features are more likely to be functional than those that are not. 

This approach has been brought to bear in the field of alternative splicing with 

several surprising results. 

 Kan and co-workers analyzed EST-inferred alternative splice events in 

human and found that less than 30% were conserved in mouse (137). The least 

conserved alternative splicing events were intron retentions. This is not 

surprising for two reasons. First, intron retention alternative splicing is 

indistinguishable from incomplete pre-mRNA processing, a common EST 

database contaminant. Therefore, many of these may not be genuine spliced 

mRNAs but rather forms caught somewhere in the splicing pathway. Also, the 

resultant isoforms of mRNAs with retained introns are the most likely to contain 

a PTC and to be degraded by NMD. Therefore, any selective pressure against 

expression of these isoforms should be mitigated. In other words, NMD may 

make these forms invisible to purifying selection, allowing them to drift into 

and out of existence randomly through evolutionary time. 

 Several subsequent analyses reiterated the observation that many human 

alternative splicing events are not observed in mice (196, 212, 280). These 
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subsequent studies also showed that conserved alternative splicing is 

distinguishable from non-conserved alternative splicing by several features. 

Conserved events are more likely to affect the protein coding sequence, more 

likely to preserve the reading frame, and more likely to use the same stop codon 

(250). They involve exons that are more similar between species and that contain 

specific intronic and exonic elements implicated in splicing (280). Out of these 

efforts, several useful criteria for discriminating functional from non-functional 

alternative splicing were generated. 

The picture that emerges is one in which many observed alternative 

isoforms may be non-functional and perhaps neutrally evolving. Since these 

isoforms derive from functional sequence, they are left to explore new 

combinations of coding sequence that have already proved to be useful. So long 

as the original isoform is still encoded at the required levels and these isoforms 

do not produce deleterious gain of function protein, evolution can freely explore 

this potentially advantageous isoform space. Further, as prematurely 

terminating isoforms may be more likely to encode dominant negative, 

truncated versions of the original protein, NMD can be used to close off this 

dangerous isoform space. Consistent with this picture, it was recently shown 

that both diploidy and alternative splicing are associated with increased 

occurrence of PTC+ isoforms (278). 
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RUST implications on NMD 

One of the most important implications of the RUST model in the field of NMD 

is that it provides a potential explanation for the severe UPF1-null phenotype in 

mammals (186). If the only role for NMD is quality control of occasionally 

aberrant gene expression, then it would be hard to imagine why mice need 

UPF1 function early in development and, further, why cultured mouse cells 

require UPF1 function. However, the mouse-knockout phenotype must be 

interpreted in light of recent evidence that UPF1 may also function in other 

cellular processes (144, 187, 273). 

Recent microarray analyses in yeast and human cultured cells underscore 

the importance of NMD in regulating gene expression. In yeast, rougly 10% of 

genes whose expression was assayed showed increased abundance in the 

absence of UPF1, UPF2, or UPF3 (165) gene product. A human expression array 

found several hundred genes influenced by NMD (189). Interestingly, the yeast 

microarray analysis found largely overlapping sets of transcripts controlled by 

any of the three NMD effectors. In the human experiments, however, this was 

not the case. Although many genes were similarly increased or reduced in 

abundance following RNAi knockdown of each human UPF gene, the level of 

non-overlap was much increased compared with that seen in the human study. 

This result indicates that each human UPF protein may have evolved new 

function(s) in metazoan evolution. 
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Future directions 

The intersection of alternative splicing and NMD is a busy one. Among the key 

open questions are those involving the regulation of both processes. It is known 

that the NMD pathway in human cells requires a cycle of phosphorylation and 

dephosphorylation of the key NMD effector, UPF1. The extra NMD effectors in 

metazoans (the smg genes) relative to S. Cerevisiae encode products responsible 

for this cycle, including a PI3K-related kinase, smg1 that phosphorylates UPF1. 

However, little is known about how, when, or where these effectors work. Is 

NMD, itself, regulated through phosphorylation of UPF1 or is UPF1 

phosphorylation/dephosphorylation necessary simply for some mundane 

biochemical aspect of PTC recognition or mRNA degradation? If NMD is 

regulated in this way, under what developmental or physiological conditions 

does this occur and why? Are the PTC+ isoforms we observe in EST libraries 

derived from tissue in which NMD is deactivated? 

 Another open question is the fate of the protein product of the pioneer 

round of translation. Some very recent evidence indicates that this product may 

be present and stable (85), for at least some PTC+ mRNAs. If this is generally the 

case, RUST may be used to turn down, but not turn off gene expression. 

 The consequences of NMD on alternative splicing and vice versa raise 

interesting questions about the evolutionary histories of both processes. For 

example, if NMD first evolved as a quality control mechanism for aberrant gene 

expression before alternative splicing, then what we know as alternative 
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splicing may have existed for a long time before any functional isoforms existed. 

This scenario would also be more likely to have generated regulated alternative 

splicing that resulted in RUST. However, if alternative splicing was first 

established, it could have been the case that it provided an increased need for 

the quality control functions of NMD.  Sorting out these issues should keep us 

busy for some time. 

 The initial EST-analysis we performed was limited in several ways by the 

data available to us at the time. Because we were using an early draft of the 

human genome sequence, we restricted our inference of alternative isoforms to 

coding regions only. The refinement of the human genome sequence and the 

associated RefSeq annotation of human genes should allow future analyses to 

include entire gene sequences, including untranslated regions. Additionally, the 

mouse, rat, chicken, and sea-squirt genomes can be used in subsequent analyses 

to determine the level of conservation of NMD-inducing alternative splicing. 

This should help partition such cases by whether they are likely to be instances 

of RUST or quality control.  

Finally, new array technology (55, 132, 267), some of which is described 

in the next chapter, has been developing that enables global monitoring of 

splicing and alternative splicing. One exciting avenue of future investigation 

will be to follow changes in splicing after NMD inhibition.  
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CHAPTER 5 
 

A microarray platform for probing alternative splicing 

regulation in Drosophila melanogaster 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  Much of the material presented in this chapter was included in the 
publication: 
 
Blanchette M, Green RE, Brenner SE, and Rio DC (2005).  Global analysis of 
positive and negative pre-mRNA splicing regulators in Drosophila. 
Genes & Development (in press).
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Background 

Higher eukaryotes exploit alternative pre-mRNA splicing to diversify their 

proteome, and to regulate gene expression with developmental stage-and 

tissue-specificity(180). Therefore, a comprehensive understanding of an 

organism’s gene expression program must include an understanding of 

alternative splicing (28). Toward this end, a well-conserved core of pre-mRNA 

splicing regulatory factors has been identified in all metazoan organisms (135, 

198). However, the majority of the interactions between these regulators and 

their target pre-mRNAs remain unknown. 

Historically, it has been challenging to identify genes specifically 

regulated by individual splicing factors. Despite tremendous effort, several 

years separated the initial identification of the hnRNP proteins PSI and hrp48 as 

regulators of the P-transposase pre-mRNA (245) and the identification of a 

single additional targeted cellular gene (46, 150). Recent advances in microarray 

technology now permit monitoring of various aspect of RNA processing and 

maturation (159). In particular, high density microarrays have been successfully 

used to monitor pre-mRNA processing events in yeast (44, 66), to identify new 

instances of alternative splicing in human and Drosophila (126, 132, 253, 267) and 

to monitor alternative splicing levels of cassette exons in different mouse and 

human tissues (213, 227). Here we describe the development of a new Drosophila 

microarray platform and its use to monitor all the annotated pre-mRNA splicing 

junctions specifically controlled by four canonical splicing regulators, the 
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hnRNPs PSI and hrp48 as well as the SR proteins dASF/SF2 and dSRp55/B52. 

This study identified tens to hundreds of distinct splice events modulated by 

each of these splicing factors and reveals the amount of co-regulation and 

antagonism between each. 

This project was a collaboration between Marco Blanchette and me. 

Marco did the experimental work (RNAi knockdown of the splicing factors, 

RNA extraction, labeling, and hybridization, and RT-PCR confirmation of array 

results) while I designed the microarrays, did the array data analysis, and the 

binding motif analysis. 

Results 

A microarray for monitoring alternative splicing in Drosophila melanogaster 

In order to rapidly and efficiently identify target genes and specific splicing 

events regulated by specific splicing factors, we have developed a microarray 

for monitoring changes of all the known alternatively spliced transcripts in 

Drosophila melanogaster. From the 13,472 genes in the GadFly 3.2 annotation, 

(http://flybase.bio.indiana.edu/annot/download_sequences.html), 2931 were 

found to have cDNA (EST) evidence of alternative splicing and generate 8315 

different alternatively spliced mRNAs (57). In order to monitor the complete set 

of annotated alternatively spliced transcripts, the single custom microarray 

contains probes spanning all the Drosophila annotated alternative splice 

junctions regardless of the specific alternative splicing pattern (Probes labelled 

“a” in Figure 5.1A, ; 9868 probes), and, up to two probes for constitutive splice  
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Figure 5.1. Experimental design and clustering results. (A) 36-mer probes were selected for all 
alternatively spliced junctions from the Gadfly v3.2 Drosophila genome annotation (“a” probes). 
For each gene, 2 exonic probes were selected from regions common to all isoforms to gauge total 
gene expression (“e” probes). Up to 2 constant constitutive junction probes were also selected 
(“c” probes). (B) Immunoblot analysis confirmed effective RNAi-knockdown of the hnRNP 
proteins PSI and hrp48, and the SR proteins B52/SRp55, and dASF/SF2. (C) Hierarchical 
clustering using average log expression ratios from all splice junction probes was performed to 
assess the global affects of biological replicates of each splicing factor RNAi knock-down and to 
compare between splicing factors. This analysis indicates that the dASF/SF2 and B52/SRp55, 
and hrp48 experiments produce a characteristic splicing response. The PSI results, however, were 
more variable (see text). The global splicing response to dASF/SF2 or B52/SRp55 knockdown 
includes more similarities than either does to hrp48 or PSI knockdown. 
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junctions (probes labelled “c” in Figure 5.1A; 4377 probes) for each of the 

alternatively spliced genes. Since it is known that there are many alternative 

mRNA isoforms yet to be annotated as such (253), some of the junctions labeled 

constitutive may actually be alternative. Two common exon probes spanning 

segments present in all isoforms of each gene (probes labelled “e” in Fig. 1A;  

5650 probes) were also selected for monitoring overall expression levels of the 

alternatively spliced mRNAs. This feature of the design allows potential 

changes in transcription level, or secondary effects, to be separated from effects 

on splicing patterns for a given gene. 

Genome wide monitoring of alternative splicing 

Using our array, we monitored splicing profile changes in Drosophila SL2 cells 

following RNAi-knockdown of four splicing regulators: the SR proteins 

dASF/SF2 and B52/SRp55, and the hnRNP proteins PSI and hrp48 (Figure 5.2). 

Each of these four well characterized splicing regulators is highly expressed in 

SL2 cells and several of them have known pre-mRNA targets. Following 

treatment with double-stranded RNA (dsRNA) against each splicing factor, 

efficient protein reduction was confirmed by immunoblot analysis using 

antibodies specific for each protein (Figure 5.1B). RNAi-knockdown of each of 

these splicing factors generated no obvious morphological or growth phenotype 

in SL2 cells, despite the fact that in Drosophila PSI, hrp48, and B52/Srp55 are 

essential and dASF/SF2 is likely to be essential (268) (269) (175). From each 

RNAi-treated sample and from control cells treated with non-specific dsRNA, 
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total RNA was extracted, cDNA prepared, and labeled using a protocol 

developed to give good coverage over the entire-length of all mRNAs (132) (55). 

Following standard hybridization, scanning, and data extraction each 

experiment and each probe signal was filtered for consistency and RNAi target  

specificity. Expression ratios (red/green ratios) of RNAi knockdown of each 

splicing factor versus no knockdown control were computed for each probe. 

Biochemical experiments demonstrate that B52/SRp55 and PSI associate with, 

and presumably modulate splicing of, at least dozens and perhaps hundreds of 

distinct pre-mRNAs (150) (142). This is also likely the case for dASF/SF2 and 

hrp48. Therefore, reduction of any of these factors may impede or deregulate 

pre-mRNA processing severely and inconsistently, rendering the array data 

undecipherable or irreproducible. To address this possibility, we carried out 

multiple RNAi knockdown experiments for each splicing factor and compared 

the effect of experiments using simple hierarchical clustering (92). Clustering 

experiments using data aggregated for each locus, each isoform, or each splice 

junction (see Materials and Methods) generated nodes specific for the 

dASF/SF2, B52/SRp55, and hrp48 experiments (data not shown and Figure 

5.1C). This indicates that the global expression patterns and splicing responses 

assayed on this array are largely distinct for the splicing factor that has been 

knocked down. The results of this high-level analysis support the notion that 

knock-down of each of these splicing factors results in a characteristic, 

interpretable, and reproducible splicing response. Interestingly, the PSI  
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factors was reduced more than one-fourth the amount of the specific target (hrp48 experiment 2 
and PSI experiment 3).
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replicates were more variable in this analysis. This is likely due to the relatively 

small number of PSI-affected splicing events (see below). Despite this 

variability, PSI experimental replicates did identify several mRNAs that were 

previously found to be associated with PSI in an embryonic nuclear RNP 

fraction and whose expression was deregulated in PSI-mutant flies (150). 

RNAi knock-down of each splicing factor causes a general decrease in 

processed mRNA 

Five distinct, exogenous and heterologous in vitro-transcribed positive control 

RNAs were amplified and labeled along with the SL2 total cellular RNA to 

provide an independent assessment of any global changes in gene expression 

that would otherwise be masked by the normalization procedure. Following a 

standard assumption, we normalized the expression data from each array so 

that the average log expression ratio is zero, i.e., no net change in expression 

(see Materials and Methods). Interestingly, after normalization, the average log 

expression ratio of RNAi to control of nearly all positive control RNAs in each 

sample, across the range of expression intensities, was positive (Figure. 5.3A). 

Since identical amounts of the positive control RNAs were introduced in both 

the reference and experimental samples, these observations indicate an average 

reduction of the detectable, expressed genes on the array following knockdown 

of any of these four splicing factors. It is unclear to what extent this represents a 

biologically direct effect or a secondary consequence of target gene transcript 

reduction. Anecdotally, a previous screen identifying four B52/SRp55 target  
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Size of the sets of alternative and constitutive junctions that are strongly and consistently up and 
down regulated following knockdown of each splicing factor. dASF/SF2 affects the largest 
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dent sets of splicing events. For each combination except B52 and PSI, the number of affected 
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pre-mRNAs showed that the predominant effect of B52/SRp55 deletion was a 

reduction in target gene mRNA levels (142). 

Each splicing factor affects a distinct set of splice junctions 

Following data extraction and normalization, we computed log expression 

ratios for each probe in experimental versus control experiments. In order to 

determine which splicing events are affected by knockdown of which splicing 

factors, we calculated a value we call the net expression for each splicing 

junction (see Materials and Methods). The net expression for each splicing 

junction is the log expression ratio for that splice junction minus the average log 

expression ratio for all other probes on the isoforms containing that junction. 

This value indicates the increase or decrease in abundance of the specific 

splicing junction in question above and beyond any increase or decrease in 

abundance of the isoforms that contain the splice junction and is designed to 

highlight individual splice junction changes by removing any differences in 

isoform expression or overall RNA levels. Because each splice junction is 

considered separately, this strategy should be minimally affected by incomplete 

data about which isoforms exist. The net expression value was calculated for all 

alternative and all constitutive junctions using the same formula. The 

distribution of the net expression values in all experiments (Figure 5.3B) was 

used to generate cut-offs for classifying the affect of knock-down of each 

splicing factor on each splice junction.. In order to find pre-mRNA splicing 

events that were strongly and consistently affected following knock-down of 
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each splicing factor, net expression differences for each junction were compared 

in the biological replicates (see Materials and Methods). 

The splicing events that were strongly (≥2 standard deviations) and 

consistently (in both replicates) affected by knock-down of each splicing factor 

were identified. The knock-down of dASF/SF2 affected the largest number of 

splicing events (319 events) while PSI affected the smallest number of splicing 

events (43 events, Figure 5.3C). This result is consistent with the notion that 

dASF/SF2 is a general regulator of alternative splicing, affecting a large number 

of targets, and that PSI is a more specialized regulator of alternative splicing. 

B52/SRp55 and hrp48 affected intermediate numbers of splice events (107 and 

90 events respectively). Interestingly, several of the splicing events detected for 

B52/SRp55 and for PSI were on genes previously found to interact with these 

splicing regulators (Table 5.1). 

The lists of splicing events consistently affected by each splicing factor 

were examined across experiments to determine which are significantly affected 

by knockdown of more than one of these splicing factors (Figure 5.3D). The 

number of such splicing events was then compared to the number that would be 

expected by chance under a random model, i.e., assuming the splice junctions 

affected by one splicing factor are chosen independently of the splice junctions 

affected by any other splicing factor. The combination of dASF/SF2 and 

B52/SRp55 produced the most striking result: 22 splicing events were similarly 

affected by knock-down of either SR protein compared to 1.87 expected by  
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Previously identified PSI targets 
Gene   Name   Gene Expression 

Labourier et. Al.(150) 
This report 

CG7439  Up NE 
CG9381  down NOA 
CG9281  Up NC 
CG5654 yps  Very down NOA 
CG16747 guf  down NE 
CG5650 Pp1-87B down NOA 
CG12101 Hsp60  Very Up NE 
CG3943  kraken  Up NOA 
CG17791 
(CG16901) 

sqd  Very down T 

CG7590  scylla  down T 
CG15112 enb  Up NC 
CG17610 grk  down NOA 
CG8293  lap2  Up NE 
CG12157 Tom40  Up NC 
CG1404  ran  Up NC 
CG4551  smi35A  Up T 
CG1088  Vha26  down NC 
CG4084  I(2)not 1.60  Up NOA 
CG7623  sll  Up NOA 
CG1668  Pbprp2  down NC 
CG3644  bic  down NC 
CG3161  Vha16  Up T 
CG12345  Cha  Up NE 
CG6575  glec  down NOA 
CG1691  Imp  Very down T 
CG5887  desat1  Very down T 

 

 80 
 

 



Previously identified B52 targets 
CG ID Gene Name This report Kim et al.(142) 
CG1765 Ecdysone receptor (EcR) NC  
CG6570 ladybird late (lbl) NOA  
CG3646 frizzled (fz) NOA  
CG10772 Furin 1 (Fur1) T  
CG12052 longitudinals lacking (lola) T  
CG10052 Rx NOA * 
CG13219 skiff (skf) NOA  
CG18362 Mix interactor (Mio) NC * 
CG31762 Arrest NC  
CG7122 RhoGAp16F T * 
CG17716 faint sausage NOA  
CG10497 Syndecan T  
CG11760  NC  
CG5228  NOA  
CG14796  NOA  
CG5953  NE  
CG15593  NC  
CG9080  NOA  
CG3950  NOA  
CG14670  NOA * 
 
NC = No change, NE = not expressed, NOA = Not on array (not alternatively spliced), T = target (gene containing 
splice event whose net expression change is >= 1.0 in both biological replicates), * = splicing defect shown by RT-
PCR by Kim et al 

 
Table 5.1. Previously identified target genes of PSI and B52 are re-identified in this 

microarray analysis. Labourier et al. (150) identified genes found in complexes with 

wild-type PSI and genes whose expression was altered in PSIΔAB mutants. The PSIΔAB 

gene product does not associate with U1 snRNP. 6 of the 13 genes from this list that are 

on our array and were expressed in the PSI experiments were found to have an affected 

splicing event in both biological replicates with a net expression change of magnitude 

>= 1.0 (p-value 0.08), including all of the most dramatically affected previously 

identified PSI targets. Kim et al. (142) identified genes associated with B52 using a 

“genomic SELEX” method. This method starts with genomic fragments whose 

transcripts bind B52. 4 of the 13 genes that are on our array and expressed showed 

reproducible splicing changes in our experiments (p-value 0.23). This genomic SELEX 

likely generates many false-positives as Kim et al. were unable to confirm splicing 

defects for many of these genes via RT-PCR. 
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chance (P-value ≤ 0.00001). This result is particularly interesting considering 

that, in vitro, SR proteins can complement one another for activity on several 

RNA targets (285) (99). Since dASF/SF2 and B52/SRp55 are the closest 

Drosophila SR protein paralogs (data not shown), this functional overlap is 

perhaps not surprising. However, the unique character of each SR protein is 

demonstrated by the fact that the majority of the splicing events strongly and 

consistently affected by RNAi of either dASF/SF2 or B52/SRp55 alone are not 

strongly or consistently affected by the other alone (22 shared targets out of 319 

dASF/SF2 and 127 B52/SRp55 affected targets respectively; Figure 5.3C and 

Figure 5.3D). 

PSI and hrp48 are known to co-regulate alternative splicing of the P-

element transposase pre-mRNA by binding to an exonic splicing silencer (243, 

245). This analysis suggests their partnership may extend beyond P-element 

splicing. Of the 43 consistent and strong PSI-targets, 7 were found to also be 

strongly and consistently under the control of hrp48, whereas only 0.257 would 

be expected under the random model of independent effect (P-value ≤ 0.00017). 

Furthermore, for the 25 splice events that were consistently and strongly 

decreased following PSI knockdown, 21 were reduced following hrp48 

knockdown by an average of -1.93 standard deviations (Figure 5.4). Similarly, 

for the 18 splice events that were consistently and strongly increased following 

PSI knockdown, 14 were increased following hrp48 knockdown by an average 

of 1.30 standard deviations (Figure 5.4). Therefore, nearly all of the splicing  
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events under the control of PSI are similarly controlled by hrp48 - suggesting 

that hrp48 may be an obligate partner for PSI. Interestingly, PSI does not appear 

to be an obligate partner for hrp48 as there are many hrp48 splicing events not 

similarly affected by PSI (Figure 5.4). 

Traditionally, SR proteins and hnRNP proteins have been viewed as 

antagonistic partners, regulating in opposite directions, many of the same 

alternative splicing units (28, 247). One of the best studied models of 

antagonistic regulation is the HIV pre-mRNA in which binding of hnRNP 

proteins to cis-acting splicing silencer elements can be counter-acted by binding 

of SR proteins to nearby enhancer elements to regulate utilization of adjacent 

splice sites (50, 51, 131, 284, 292). We analyzed antagonistic regulations by 

looking at splicing events that were increased following knockdown of one 

splicing factor and decreased following knockdown of a different splicing factor 

(Figure 5.3E). Surprisingly, very few splicing events were found to be 

consistently and strongly regulated in an antagonistic relationship by any 

combination of these splicing factors. At a cut off of 2.0 standard deviations, 

only dASF/SF2 and hrp48, which are the Drosophila homologs of the two 

canonical antagonistic splicing factors ASF/SF2 and hnRNP A1 (47, 185) are 

found in more than a single antagonistic splicing event (Figure 5.3E). At a more 

permissive cut off, 1.5 standard deviations, more such antagonistic affects can be 

seen (Figure 5.5). These data indicate that antagonism between SR proteins and  
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Figure 5.5. Global microarray analysis. (A) Plot of total expression values versus log expression 
ratio of each positive control probe reveals a strong positive skew. Equal amounts of each 
positive control RNA were added to control and experimental samples. (B) The distribution of 
the net expression for each splice junction probe across all experiments is shown in the histo-
gram. Cutoffs for up or down regulation were set at 1.5 standard deviations from unchanged. (C) 
Size of the sets of alternative and constitutive junctions that are strongly and consistently up and 
down regulated following knockdown of each splicing factor. dASF/SF2 affects the largest 
number of splicing events; PSI affects the smallest number. (D) Number of splicing events 
strongly and consistently affected by RNAi knockdown of each of two splicing factors. In 
parentheses are the expected sizes of each set assuming that each splicing factor affects indepen-
dent sets of splicing events. For each combination except B52 and PSI, the number of affected 
events is larger than expected by chance. (E) Antagonistically affected splice junctions. The 
number of splice events that were increased following knockdown of one splicing factor and 
decreased following knockdown of another are shown. Also shown are the number expected 
under the random model in which each splicing factor’s affects are independent of the affects of 
the other splicing factors.



hnRNPs appears to be highly specific for both interacting partners (Figure 5.4) 

and somewhat uncommon. 

RT-PCR validates the microarray results 

A validation of the microarray results was performed on several individual 

genes by RT-PCR designed to amplify the different affected mRNA isoforms. 

From the analysis described above, six genes were chosen on the basis that they 

were previously unknown targets of any of the four factors tested and whose 

structure was amenable to RT-PCR analysis using a single pair of primers for 

each target (Figure 5.6 and Figure 5.7). All the selected targets confirmed the 

microarray results with differences in expressed isoforms ranging from less than 

two-fold (PSI-specific target CG4912, Figure 5.6C) to twenty five-fold 

(B52/SRp55 specific target CG6084, Figure 5.6C). 

B52 binding sites are over-represented around the 5’ splice site of the B52-

affected splicing junctions 

Any observed change in pre-mRNA splicing in the experiments may be due to a 

direct interaction between the splicing factor and pre-mRNA in question or to 

an indirect effect. One feature of direct targets for each splicing factor may be 

the presence of a cis-acting element within the pre-mRNA near the affected 

splice site. The assembled lists of splicing events specifically affected by 

reduction of each of these four splicing factors were used to identify potential 

binding elements for these factors. While many SELEX and other biochemical 

studies have been conducted to characterize the RNA binding preferences for  

 86 
 

 



A

B
-3
-2
-1
0
1
2
3
4

NS PSI hrp48 B52 ASF

Lo
g

2(A
/B

)

B

A

A

CG6143 (Pep)

1 2 1 2 1 2 1 2 1 2
NS PSI Hrp48 B52 ASF RNAi

CG6084

1 2 1 2 1 2 1 2 1 2
NS PSI Hrp48 B52 ASF RNAi

1 2 1 2 1 2 1 2 1 2
NS PSI Hrp48 B52 ASF RNAi

A

B
-2.5

-1.5

-0.5

0.5

1.5

2.5

NS PSI hrp48 B52 ASF
Lo

g
2(A

/B
)

Microarray
data

B

A

B

A

B

CG4912

-0.5

0

0.5

1

1.5

NS PSI hrp48 B52 ASF

Lo
g

2(A
/B

)

B

A

C

0 1.0-1.0

0 1.0-1.0

log-expression
ratio scale

Microarray
data

log-expression
ratio scale

Microarray
data

log-expression
ratio scale

0 1.0-1.0

Figure 5.6. RT-PCR validation of selected targets. Shifts in alternatively spliced isoforms 
predicted from the microarray analysis were monitored by RT-PCR for 3 different targets using 
oligonucleotides flanking the affected alternative splice sites. Together with the RT-PCR gel 
analysis, the alternative spliced junction expression computed from the microarray data are 
shown (bottom panel). The densitometry of the gels are shown on the left expressed as a log2 
ratio of the 2 measured isoforms. (A) CG6084 is a predicted target of the SR protein B52/SRp55. 
B52/SRp55 knock-down promoted skipping of the alternative cassette exon. (B) CG6143 (PEP) 
is a predicted B52/SRp55 target whose cassette exon is included upon knock-down of 
B52/SRp55. (C) CG4912 is a predicted target of the hnRNP protein PSI. The knock-down of PSI 
promotes skipping of the alternative cassette exon.
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Figure 5.7  RT-PCR validation of selected targets. Shifts in alternatively spliced isoforms 
predicted from the microarray analysis were monitored by RT-PCR for 3 different targets using 
oligonucleotides flanking the affected alternative splice sites. Together with the RT-PCR gel, the 
alternative spliced junction expression computed from the microarray data are shown (bottom 
panel). The densitometry of the gels are shown on the left expressed as a log2 ratio of the 
measured isoforms. (A) CG6395 is a predicted target of the hnRNP proteins PSI and hrp48. Both 
PSI and hrp48 knock-down promoted inclusion of an intron in the mature mRNA. (B) CG8295 is 
a predicted target of the SR protein ASF and the hnRNP protein hrp48 affecting different splicing 
events of the same alternatively spliced region.  The products label * are uncharacterized RT-PCR 
products. (C) CG31641 is a predicted target of the SR protein ASF. The knock-down of ASF 
promotes skipping of the alternative cassette exon.
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splicing factors, the results have been limited in their ability to predict in vivo 

splicing affects on specific targets. However, one particularly informative study 

identified a sequence that likely forms a stem-loop structure that binds 

Drosophila B52/SRp55 tightly in vivo (241). A position weight matrix model of 

this sequence was used to search for similar sequences in a database composed 

of sequences around either 3’ or 5’ splice sites that were either reduced or 

increased specifically upon B52/SRp55 knockdown (Figure 5.8; see Materials 

and Methods). For comparison, a search was performed using a database of 3’ 

or 5’ splice site regions found to be affected by RNAi against any of the other 

three (non-B52/SRp55) splicing factors, but not affected by B52 knockdown. The 

fraction of 3’ splice site regions that contain two strong matches to this sequence 

motif is similar to the fraction found in the comparison database search (Figure 

5.8B). However, the regions around the 5’ splice site in the B52/SRp55 knock-

down-reduced junctions were specifically enriched for pairs of this motif 

compared with the corresponding non-B52/SRp55 set (Figure 5.8B). A similar 

search using the SELEX-defined motif recognized by the human ASF/SF2 

homolog (257) also shows an overrepresentation near the 5’and 3’ splice site 

regions regulated by the Drosophila ASF/SF2 homolog in our experiments 

(Figure 5.9). Although suggestive, this analysis has the caveat of being 

performed using human-derived SELEX sites. Although the human and 

Drosophila orthologs are very similar (62% identical with 10% additional  
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Figure 5.8. B52/SRp55 binding motifs near B52/SRp55 uniquely affected splice junctions. (A) 
Sequence logo of the previously identified B52/SRp55 binding motif (Shi et al. 1997). Lines 
connecting residues indicate predicted base-pairing interactions. Stars underneath residues 
indicate B52/SRp55 footprint contacts (Shi et al. 1997). (B) Pairs of motifs similar to the previ-
ously identified B52/SRp55 binding motif (Shi et al. 1997) are over-represented around 5’ splice 
sites that are down-regulated when B52/SRp55 is knocked-down relative to the 5’ splice sites 
affected in the other experiments. No significant difference is seen in 5’ splice site regions around 
up-regulated junctions or in either up- or down-regulated 3’ splice site regions. Error bars are 
determined analytically using the binomial distribution and correspond to one standard deviation: 
sqrt( np( 1-p ) )/n where n is the number of sequences searched and p = observed probability of 
having sites of given score.
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Figure 5.9 ASF binding motifs near ASF uniquely affected splice junctions. (A) Sequence logo of 
the previously identified human ASF binding motif (Tacke and Manley, 1995). (B) Triplets of 
motifs similar to the previously identified human ASF/SF2 binding motif  are over-represented 
around 5’ and 3‘ splice sites that are down-regulated when ASF is knocked-down relative to the 
splice sites affected in the other experiments. No significant difference is seen in 5’ or 3‘ splice 
site regions around up-regulated junctions ASF or by the other splicing factors. Error bars are 
determined analytically using the binomial distribution and correspond to one standard deviation: 
sqrt( np( 1-p ) )/n where n is the number of sequences searched and p = observed probability of 
having sites of given score.  
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similarity, data not shown), their RNA binding specificities may have diverged. 

Similar analyses using known binding site motifs for hrp48 and PSI failed to 

show enrichment around the affected splice junctions (data not shown). 

However, these negative results may be due to imprecise or inaccurate 

definition of the PSI and hrp48 binding site motifs: both proteins bind very 

degenerate sites derived from very limited binding data. 

Discussion 

This study represents the first genome-wide identification of alternative splicing 

events modulated by the four splicing factors, dASF/SF2, B52/SRp55, hrp48, 

and PSI. Traditionally, thorough genetic or in vitro biochemical analyses have 

been required to identify splicing events controlled by specific splicing factors 

(28). This difficulty accounts for the paucity of well-defined systems for 

studying alternative splicing. Although genome-wide analyses involve 

substantial risk of false positives and false negatives, this new splice junction 

platform provides the ability to rapidly identify many splicing events regulated 

by individual splicing factors and provides the basis for more focused searches 

for corresponding RNA regulatory motifs. 

Analysis of the array results allows us to characterize the extent to which 

alternative splicing events require multiple splicing factors. The significant 

overlap between dASF/SF2 targets and B52/SRp55 targets reinforces earlier 

biochemical characterizations that indicate partial functional overlap between 

these factors (99, 285). However, as many splicing events were found to be 
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uniquely affected by either factor individually, these data also demonstrate their 

discrete characteristics. It remains to be determined whether the observed 

functional overlap is due to similar RNA-binding specificities, the presence of 

unique binding sites for dASF/SF2 and B52/SRp55 in target pre-mRNAs, or to 

other properties of these factors such as interaction with a common binding 

partner already present on target pre-mRNAs. 

Hrp48 and PSI were also found to regulate many of the same splicing 

events. As nearly every identified target of PSI was similarly affected by hrp48 

knockdown, these data suggest that hrp48 may be an obligate partner for PSI 

action. However, since many of the hrp48-affected splicing events were not 

similarly affected by PSI knockdown, the reverse does not appear to be the case, 

i.e., hrp48 does not appear to require PSI to regulate splicing.  

Several antagonistic relations were also defined in this analysis, 

especially between dASF/SF2 and the hnRNPA1 homolog, hrp48. However, the 

absence of an overall negative correlation between dASF/SF2 knockdown and 

hrp48 knockdown supports a model in which their antagonism is mediated 

through cis elements present in target pre-mRNAs rather than through direct 

interaction between these proteins. That is, dASF/SF2 and hrp48 appear to be 

antagonistic only for a subset of splice sites that bind both factors and 

apparently most target pre-mRNAs of both do not. 

While computational searches for the high affinity B52/SRp55 SELEX 

motif (241) showed an enrichment near some of the affected junctions on the 
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microarray, searches for the Drosophila PSI SELEX motif (14), which can be 

found in a very large fraction of pre-mRNAs (data not shown), was not enriched 

near the 43 PSI-affected splice junctions. This observation is reminiscent of the 

well-known splicing factor Sex-lethal (Sxl) whose binding site can be found in 

all known pre-mRNAs (R. Singh, personal comm.), but controls alternative 

splicing of only three known pre-mRNAs (180). Our results suggest that the 

mere presence of strong SELEX-defined RNA binding sites is generally not 

sufficient to predict regulation of nearby splice sites in a physiological setting. 

Functional SELEX has been performed in vitro and in vivo to identify both 

splicing enhancers and silencers (270) (174) (70). The identified motifs were very 

short and presumably regulated by binding of a single protein, arguing that 

single factors can control individual alternative splicing events. However, it is 

also known that several specific regulated splice sites require the formation of 

large, multi-protein complexes compatible with the requirement for a higher 

order of complexity, rather than a single RNA-protein interaction (179) (244). As 

has been the case for transcriptional regulation via DNA-binding proteins, a 

combination of genome-wide methods to identify target genes together with 

bioinformatics searches using protein binding site information, may prove to be 

the only way to validate in vivo the activity of putative cis-acting pre-mRNA 

elements controlled by specific regulatory proteins. 

Current evidence indicates that the number of alternative splice junctions 

in Drosophila is at least 10,000 (57) and may be as high as 40,000 (253). Based on 
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the present study using an arbitrary cut off of 2 standard deviations, each 

splicing factor regulates a few hundred (43 for PSI to 319 for dASF/SF2) 

alternative splicing events in a given cell type. Since there are around 200 

putative splicing factors in the Drosophila genome (57, 135), the observed range 

of splicing junctions regulated by individual splicing factors is within the 

expected order of magnitude to account for the level of splicing complexity of 

the fly transcriptome. These splicing microarray experiments demonstrate on a 

genomic scale the unique character of each of these four splicing factors and 

give a first glimpse into the network of interactions regulating alternative 

splicing. Similar experiments using this technology should lead to an 

understanding of how the genes involved in RNA processing interact to 

regulate the tens of thousands alternative splicing events in metazoans (41). 

Materials and Methods 

Drosophila melanogaster alternative splicing array design 

All transcript sequences from the Gadfly version 3.2 Drosophila melanogaster 

genome annotation (dmel_all_transcript_r3.2.0.fasta) (57) were mapped to the 

masked genome sequence (whole_genome_masked_genomic_dmel_RELEASE3-

1.FASTA) using SPIDEYv.1.40 (272). Transcripts that overlapped on the same 

strand were clustered into loci. Only loci with multiple, unique transcripts 

(alternatively spliced loci) were considered further. For each of these loci, each 

splice junction was labeled “constitutive” if it was found in all transcripts from 

that locus and “alternative” otherwise. Note that some alternative isoforms 
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contain only alternative transcriptional initiation or termination regions and, 

therefore, may not be alternatively spliced in the strict sense. For each locus, 

junction probes were selected that are complementary to the 18 exon nucleotides 

on each side of the junction. Junction probes were selected for each alternative 

junction and up to two constitutive junctions per locus. Two exon probes for 

each locus were selected such that they avoid splice junctions and to have at 

least three mismatches when compared to any other transcribed Drosophila 

sequence. Five unique probes from each of five exogenous genes were included 

as positive controls and the same number as negative controls. All probe 

features were included on two locations on the array for consistency checking. 

RNAi, RNA extraction, RNA labelling and array hybridization 

Production of dsRNA and RNAi was as described (67). RNAi were done for 4 

days by incubating 10µg of the different dsRNA with 0.5 X 106 serum-free 

adapted Schneider SL2 cells (Invitrogen) with addition of 10 µg of dsRNA after 

48 hour. At day 4, 10% of the cells were recovered and lysed in protein gel 

loading buffer while the remaining cells were used for total RNA extraction 

using the Qiagen mRNA Easy purification kit with on column DNAse digestion 

following the manufacturer’s protocol. In vitro transcribed RNAs of the human 

U17, U19, 7Sk small RNA as well as the human and tetrahymena telomerase 

RNA (300, 100, 10, 2.5 and 25 fmol each respectively) were added as internal 

quality and sensitivity control to 10 µg of total RNA and were amplified, labeled 

and hybridized as described (55) on a 44k custom Agilent oligonucleotide array.  
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Array analysis 

After hybridization, arrays were scanned and images analyzed following the 

manufacturer’s recommendation (Agilent). Linear-LOWESS dye normalization 

was performed using all probes except for negative controls. The Pearson 

correlation co-efficient was computed for all probe expression values using the 

two instances of each probe on the array as the x and y values and found to be 

>0.97 for all experiments. One B52/SRp55 experiment was removed from the 

analysis on the basis of a non-consistent effect in the red channel (Figure 5.2A). 

Array data from each experiment were then analyzed to determine the extent of 

specific knock-down of each target. Experiments that failed to yield a strongly 

negative log expression ratio for probes of the each RNAi target (log-ratio ≤ -0.2) 

or that also yielded a strongly negative log expression ratio for probes of a 

different RNAi target were discarded (Figure 5.2B). This removed the first PSI 

experiment, the second hrp48 experiment, and the first ASF/SF2 experiment. 

Remaining for further analysis were two experiments of each splice factor 

target. Since each probe occurs twice on the array, a single expression average 

was computed. Any probe whose expression at one position in either red or 

green channels was more than 150% of its expression in that channel at its other 

position was removed from the analysis. Hierarchical clustering of experiments 

using average linkage clustering was performed. A single average expression 

value for each locus, each isoform, or each junction was generated. Locus and 
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isoform averages were computed by taking the average log expression ratio of 

all probes from each locus or from each isoform. 

To separate gene-level or isoform-level expression changes from splicing 

changes, the average log expression ratio of all junctions for each isoform was 

subtracted from the expression ratio of each junction. This value, which we call 

the net expression of each junction, is given by the formula: log expression ratio 

(x) – average of log expression ratios (y) where x is the splice probe in question 

and y is the set of all probes that are on all isoforms that contain junction x. This 

approach deemphasizes changes in splicing events that are correlated with 

other splicing events of the same transcript. However, it makes minimal 

assumptions about the set of isoforms present for a given locus. Therefore, it is 

unharmed by missing transcript isoform models since each splicing event is 

considered individually. The distribution of the net expression was found for 

each experiment and for all experiments and was found to be similar (data not 

shown). Therefore, we used the data compiled for all experiments to generate 

statistical cut-offs. 

For each splicing junction probe, the net expression was compared 

between biological replicates of each splice factor knockdown experiment. Bona 

fide targets of each splicing factor are expected to be consistently affected in 

biological replicates whereas noise is expected to vary among replicates. 

Therefore, splicing junction net expression values were used to filtered for those 

within 2 standard deviations of the net-expression value of each other. We 
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compiled lists of splicing events that were strongly (net expression value 

deviated more than 2 standard deviations from 0) and consistently (in both 

biological replicates) affected by knock-down of each splicing factor. 

Comparisons of each pair of lists were used to determine overlap in splicing 

factor targets. The statistical significance was determined using the 

hypergeometric distribution with Bonferonni correction for 3 observations on 

each splicing factor. These results are given in Table 5.2. 

RT-PCR 

For each experiment, 5µg of RNA was extracted and primed with a dT16 

oligonucleotide and reverse-transcribed using SuperScript II (Invitrogen) 

following the manufacturer’s protocol. Amplification was performed following 

standard conditions for 21 cycles using 1/20th of the cDNA reaction in the 

presence of 5 µCi of α32P-dCTP (3000 Ci/mmol). Oligonucleotide sequences can 

be obtained upon request. RT-PCR products were fractionated on a 6% 

acrylamide-bisacrylamide gel run in 1X TBE buffer. All gels were dried, exposed 

and scanned on a Typhoon phosphorimager (Amersham-Pharmacia). 

Densitometry of unsaturated exposure was performed using ImageQuant 

(Amersham-Pharmacia). 

Sequence motif search 

Position weight matrix motifs of ASF/SF2, B52/SRp55, PSI, and hrp48 binding 

sites were generated using previously published binding data from a variety of 

sources. Databases of regions 100 nt upstream and downstream of 5’ and 3’ 
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splice sites were constructed using the splice junctions found to be uniquely 

affected for each splicing factor knockdown. The comparison databases for each 

factor were composed of the sequences uniquely affected by any of the three 

other splicing factors not under examination. The motif was used to scan each 

position on each sequence in the database and high-scoring positions were 

counted and shown in Figure 5.8 and Figure 5.9. The error bars shown indicate 

the standard deviation for a single test. No correction for multiple testing was 

done. 
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CHAPTER 6 
 

Bootstrapping, Bayesian bootstrapping, and normalization for enhanced 

pairwise sequence evaluation 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  Much of the material presented in this chapter was included in the 
publications: 
 
Green RE, and Brenner SE (2002).  Bootstrapping and normalization for 
enhanced evaluation of pairwise sequence comparison   Proc. IEEE. 90 (12):  
1834-1847. 
Price G, Crooks GE, Green RE, and Brenner SE (2005). Statistical Evaluation of 
Pairwise Sequence Comparison with the Bayesian Bootstrap   Bioninformatics 
(submitted). 
 
The analyses have been updated with current versions of the databases and 
current database search programs.
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Introduction 

 The explosive growth of biological sequence databases provides great 

opportunity for molecular and computational biologists.  High-throughput 

sequencing projects have generated complete genome sequence for hundreds of 

microbes and several eukaryotes (24), including humans (153).  Biologists use 

these comprehensive data in their attempt to discover the biological functions of 

genes and the proteins they encode.  For many proteins it is possible to make 

inferences of function based simply on recognizable similarity with previously 

characterized sequences.  Current technology allows between one third to one 

half of the genes within newly sequenced genomes to be annotated on the basis 

of recognizable sequence similarity to genes of other organisms (252).  

Furthermore, as more genomes are sequenced and more genes are 

characterized, greater fractions of new genomes can be annotated in this way 

(95). 

 The ability to make useful inferences based on sequence similarity is 

based on the relationships between protein sequence, structure, and function – 

all of which revolve around homology (Figure 6.1).  Homologous proteins are 

those that had a common evolutionary ancestor.  The most common means of 

inferring homology is by sequence comparison: experience has demonstrated 

that significant sequence similarity is a reliable indicator of homology.  Because 

protein structure evolves very slowly, with cores being exceptionally well 

conserved over billions of years of evolution, homology between two proteins  
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Sequence
Similarity

Structural
Similarity

Functional
SimilarityHomology

Fig.ure 6.1  Inferences from sequence similarity.  Detectable similarity between two protein 
sequences implies a common origin, homology.  This, in turn, implies a common 3-dimensional 
structure.  Other inferences are less reliable, indicated by lighter arrows.
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effectively guarantees that they will share similar structures (65).  It is generally 

believed that some similar protein structures have evolved independently, so 

structural similarity does not always signify evolutionarily relatedness. 

Common ancestry suggests that two related proteins may share similar 

functions, but proteins may change their roles over evolutionary time.  

Moreover, similar functions have evolved many times by convergence (82).  

However, homology can provide sufficient clues about function to suggest 

experiments or inform hypotheses, allowing further characterization of an 

unknown protein.   Sequence similarity detection is crucial in other aspects of 

computational molecular biology as well.  For example, gene-finding, 

phylogeny reconstruction and analysis, pathway reconstruction, and homology 

structure modeling all depend heavily upon the effectiveness and reliability of 

sequence comparison methods.   

Many methods have been developed for detecting sequence similarity, 

reflecting the central role it plays in computational biology.  Proper use and 

interpretation of the results of these methods requires an understanding of the 

relative merits of each.  Sequence-based similarity detection methods fall into 

two broad categories:  pairwise and profile.  Pairwise methods are those that 

take as input two single sequences and attempt to generate the optimal 

alignment between them.  Searching a database of known sequences using a 

pairwise alignment method is a straightforward matter of generating 

alignments between the query sequence and each of the database sequences.   
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Alignments with the best scores are then examined.  Profile methods, on the 

other hand, generate a statistical model, or profile, of a sequence family and 

then compare the profile to a given sequence.  Using a profile method, therefore, 

involves both constructing profiles and using them to detect similar sequences.  

Although profile methods have proven to be more sensitive than pairwise 

methods, their use requires prior knowledge of the sequence family in question 

– knowledge that typically derives from pairwise methods.  

 Sequence similarity detection using pairwise methods generally requires 

two steps, the first of which is generating the alignment between the sequences.  

Current pairwise-alignment algorithms for database searching are derivatives of 

the Needleman-Wunsch dynamic programming algorithm (205) as modified for 

local alignment by Smith and Waterman (248).  The Smith-Waterman algorithm 

guarantees the optimal alignment under a given scoring scheme, and the 

SSEARCH  program (216) provides a full implementation.  Heuristics that speed 

up pairwise alignment have been introduced in BLAST (12) and FASTA (220), the 

two most popular algorithms.  WU-BLAST  and NCBI BLAST are both 

implementations of the BLAST algorithm, differing in the way score statistics are 

generated as well as some heuristics.  WU-BLAST implements and reports Karlin 

and Altschul sum statistics (11, 139) by default.   

Alignments are generated using a scoring scheme that includes a 

substitution matrix and gap parameters.  Substitution matrices for protein 

sequence alignments are 20x20 matrices that give scaled, log-odds scores for the 
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pairing of any two aligned amino acid residues in an alignment (5).  The score of 

a given alignment is simply the sum of the matrix values for each position in the 

alignment, minus the penalty for gaps within the alignment.  The optimal 

alignment is the one that generates the highest score in this way.  For local 

alignments, this may not include all of either sequence. 

The second step in pairwise similarity detection is generating a statistical 

score for the alignment. It has been shown analytically for ungapped alignments 

(5, 138) and empirically for gapped (9, 69, 249) alignments that optimal 

alignment scores follow an extreme value distribution (EVD).  Therefore, 

generating a statistical significance score for an alignment is really a problem of 

finding appropriate EVD parameters for the raw score in question.  The BLAST  

programs have pre-computed EVD data for several sets of scoring parameters 

based on large scale computational experiments with simulated data (8).  The 

FASTA package programs (FASTA  and SSEARCH), by default, generate empirical 

EVD parameters for a given alignment by curve-fitting the distribution of 

alignment scores generated during the database search in question (219).  By 

either method, once the EVD parameters are derived, an E-value can be 

generated that represents the significance of the alignment in the context in 

which it was generated (7).  Statistical scores have proven to be far superior to 

other measures of alignment quality (37, 219). 
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Methodology 

Because the primary aim of similarity search methods is homolog detection, 

they are typically evaluated by their ability to do this effectively.  Homolog 

detection always requires a balance between sensitivity and specificity.  

Sensitivity is defined here as the ability to identify the homologs of a given 

sequence within a database of homologous and non-homologous sequences 

(true positive detection).  Specificity, by comparison, is the ability to exclude 

non-homologs from the list of real homologs (false positive exclusion).  The 

trade-off between sensitivity and specificity is a consideration for all similarity 

search methods since any set of inputs will generate a score.  The most powerful 

methods assign good scores only to real homologs and bad scores only to non-

homologs.  Because the number of non-homologs will typically be vastly greater 

than the number of homologs in a given database search, specificity is especially 

important. 

Constructing the Evaluation Databases 

To evaluate the sensitivity and specificity of a comparison method it is 

necessary to construct a test dataset of sequences whose evolutionary 

relationships are known.  Classifications in existing databases, such as PIR (277), 

have been used for this purpose (217, 218).   Custom datasets, such as the 

Aravind set, have also been expressly derived for evaluating similarity detection 

methods (235, 236).  Evaluations of new substitution matrices or other scoring 

parameters have made use of an even wider array of test sets (93, 118).  The 

 107 
 

 



power of a given similarity search method is then assessed by its ability to 

predict known relations while avoiding spurious matches.  Naturally, the 

knowledge of which sequences are related should be derived independently of 

the method being evaluated.  Because a large percentage of sequence database 

annotation derives from sequence similarity detection, it is not desirable to use 

this annotation as the basis for constructing evaluation databases.  This will miss 

the truly homologous sequences that have yet to be correctly annotated.  

Additionally, false annotations which currently corrupt databases will be 

included (31, 36).  Consequently, using sequence-based classifications leads to a 

circularity and tests consistency with existing methods rather than absolute 

accuracy. 

A solution to this problem is to use structure as a means of inferring 

evolutionary relationships between pairs of sequences.  Because structure 

evolves more slowly than sequence, structural similarity can be used as a “gold-

standard” for determining whether any two sequences are related.  To this end, 

analyses frequently use the classifications in the SCOP (37, 38, 140, 171, 202) and 

CATH (30, 102, 209) databases as well as direct structural similarity (234). 

The SCOP: Structural Classification Of Proteins database provides a hierarchical 

classification of the structural domains of all solved protein structures.  Domains 

are classified at the level of class, fold, superfamily, and family.  ASTRAL (60, 61) 

provides sequence sets of SCOP domains, filtered at various levels of identity.  

These domain sequences, along with their SCOP classification information, can 
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be used as test sequences for any similarity detection method, since their 

relationships are known.   

Protein domains are the unit of classification within SCOP, and by 

extension, ASTRAL, because these are the fundamental units of protein evolution 

and structure.  Using domain sequences, rather than whole proteins, allows us 

to unequivocally identify which domains are involved in any pairwise 

alignment.  This can be difficult to do when using multi-domain sequences or 

sequences whose domain organization is unknown.   An unfortunate 

consequence of using isolated domain sequences is that more global methods 

and parameters may be favored; each sequence is a complete structural and 

evolutionary unit, pairs of which will have similar lengths with meaningful 

alignments over their entire lengths.  By contrast, most typical database queries 

require identification of regions of similarity within sequence pairs that have 

both related and unrelated regions. 

Within the SCOP hierarchy (Figure 6.2), it is widely acknowledged that 

domains of the same superfamily are descendants of a common ancestor.  

Domains of different folds are believed to be evolutionarily unrelated.  Domains 

of the same fold but different superfamily currently lack evidence of homology.  

If such evidence eventually becomes available, superfamilies can be coalesced to 

reflect this new understanding.  We evaluated similarity detection methods and 

scoring parameter sets by their ability to generate good scores for all the truly 

homologous sequences, i.e., those within the same superfamily, while  
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Figure 6.2  SCOP hierarchy sample.  The two top levels of SCOP, class and fold, are purely based 
on structural similarity.  Domains of the same superfamily rely upon common structure and other 
features as evidence of homology.  The superfamily level and all those below are based on 
homology.  The superfamily level is unique in being based on structural information and
indicating homology.
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simultaneously generating poor scores for all sequences of different folds.  

Domains classified in the same fold but different superfamilies are treated as 

undetermined and not considered in our benchmarking.    

Our test databases (Figure 6.3) were constructed from the genetic domain 

sequences within the ASTRAL database based on SCOP release 1.67 (and previous 

versions where noted).  These sequences were filtered at 40% sequence identity 

to make the test specific for remote homolog detection, as sequences with 

greater than 40% sequence identity are easily identifiable as similar (232).  After 

masking low-complexity regions with SEG (276) (using parameters –w 12 –t 1.8 –

e 2.0) this database was partitioned into two similarly sized databases.  Each 

contained all sequences of every-other sequence fold; there are no sequences in 

the intersection of the two sets.  One dataset, with 3431 sequences, can then used 

as a training database to determine optimal search parameters (substitution 

matrix, matrix scaling, gap penalties) for any of the pairwise search methods.  

Hereafter, it will be referred to as the training database.  The other database, 

with 3169 sequences, was used as the test database. Comparisons are performed 

against this database using the optimal parameters found on the training 

database.  Separating the original ASTRAL set in this way ensures that we do not 

simply evaluate a particular algorithm’s ability to be optimized for the database 

in question.   
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Figure 6.3  Training and test databases.  The ASTRAL 1.67 database, filtered at 40% sequence 
identity, was partitioned into training and test databases.  Partitioning was done at the level of 
fold.  Parameter optimization on the training database was followed by evaluation on the test 
database.  
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Summarizing database homolog detection search results:  The CVE plot 

As mentioned previously, the ability of a similarity detection method to report 

truly homologous sequence matches must be balanced against its ability to 

refrain from reporting matches between unrelated sequences.  This sensitivity 

versus specificity tradeoff can be rendered graphically via the coverage versus 

errors per query (CVE) plot (37).  CVE plots are related to ROC plots (37, 111, 

293) and SPEC-SENS (114, 229) curves, but present the data in an way that is 

directly interpretable.  A CVE plot is generated by performing a database versus 

database search and ordering the results by significance score (Figure 6.4).  

Then, each reported match pair, from most significant to least significant, is 

evaluated by its SCOP classification information to be homologous, non-

homologous, or undetermined.  At each significance threshold, a point on the 

CVE plot is generated.  The x-coordinate of the point is coverage; that is the 

number of detected homolog pairs divided by the total number of pairs that 

exist (true positives / number of homolog pairs).  The y-coordinate of the point 

is errors per query (EPQ), namely the number of non-homolog pairs reported 

divided by the size of the query database (false positives / number of queries).  

The CVE results generated from a perfect homolog detection method would be 

a single point at the lower right hand corner (Figure 6.4). 

There are benefits of depicting the error rate in this way that allow 

analyses not possible by other methods.  First, EPQ rates are comparable 

between experiments, even when the databases are not the same.  This is  
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Query Target Score Related? Coverage Errors per
query
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YES 0.092 0.010d1ctj__ d1c53__ 1.6e-1
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d1neu__ YES 0.349 9.998d1eaja_ 4.4

NO 0.349 9.999d1i0ha1 d1qfoa_ 4.5

Database search results Analysis

Figure 6.4 Generating coverage versus error per query (CVE) plots.  Results of a database versus 
database search are ordered by significance (columns 1-3).   Using SCOP, each match is classified 
as having identified related sequences, unrelated sequences, or sequences whose relationship is 
not known (not shown).  If the matched sequences are related, the coverage is increased.  If the 
matched sequences are not related, then an error was made and the errors per query increases.  A 
point on the CVE plot is generated for each significance level in the list, from most significance 
to least significant.  Note that the significance scores themselves are not shown on the CVE plot.  
A perfect similarity detection method would correctly identify all the relations within the database 
before making any errors.  This would be represented as a single point in the lower right-hand 
corner of the CVE plot.
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because the distribution of false positive scores from a database search is largely 

independent of the database searched.  Also, using EPQ allows the direct 

evaluation of significance scoring schemes (such as E-values) because EPQ and 

significance scores share the same scale.  EPQ reports the number of false 

positives observed per database query whereas significance scores report the 

number of false positives expected per database query.  The EPQ axis in a CVE 

plot is log-scaled to show performance over a wide error range allowing, in 

particular, consideration of performance at very low error rates.   

Superfamily size normalization 

On CVE plots, the 100% coverage level is defined by the number of homologous 

relations between members of all superfamilies.  The number of these relations 

within a given superfamily grows quadratically with superfamily membership.  

Therefore, any representational biases present within the database are 

exacerbated, and large families dominate the overall results.  There are well-

known biases within the database of solved structures and, by extension, within 

scop and astral.  Proteins that are more amenable to structure determination or 

are deemed more interesting research subjects are over-represented.  Because of 

this bias, performance evaluation may be skewed to favor those methods that 

detect similarity between members of the larger superfamilies.   

 We took two approaches to neutralizing this effect (Figure 6.5).  Both 

approaches assign a weight to each correctly identified relation that is a function 

of the size of the superfamily in which it occurs.  Under quadratic normalization  
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Figure 6.5  Normalization schemes.  For each normalization scheme, the size of each matrix 
element represents the weight given to each relation.  (a)The number of correct superfamily level 
relations, shown in blue, is naturally dominated by large superfamiles.  (b)Linear normalization 
weights each superfamily in linear proportion to the number of sequences it contains.  (c)Under 
quadratic normalization, each superfamily is weighted equally.
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each correct pairwise relation identified is weighted by 1/(n2 – n), where n is the 

number of the sequences within that superfamily, because n2 – n is the number 

of relations within each superfamily.  Therefore, quadratic normalization 

weights all superfamilies equally, regardless of size.  Under quadratic 

normalization, the maximum achievable ‘coverage’ is the number of 

superfamilies in the test database and the quadratically normalized CVE plots 

presented reflect this fact. 

Linear normalization is a compromise between no normalization and 

quadratic normalization.  Linear normalization is motivated by the fact that 

sequence superfamilies are not, in fact, represented equally in nature.  

Furthermore, the representational bias within our test databases reflects, at least 

to some degree, the unequal representation within the sequence superfamilies 

found in nature.  Therefore, the results generated by larger superfamilies should 

carry more weight, but not necessarily quadratically more weight, than smaller 

superfamilies.  In this normalization scheme, each superfamily is weighted in 

linear proportion to its size.  Each correctly identified pairwise relation is 

weighted by 1/(n – 1).  Therefore the maximum achievable ‘coverage’ is the 

number of sequences within the test database, and the linearly normalized CVE 

plots presented reflect this. In other words, unnormalized coverage is the 

fraction of all true relations that are found, linear normalized coverage is the 

average fraction of true relations per sequence, and quadratic is the average 

fraction per superfamily. Since linear and quadratic normalization 
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systematically down-weight larger superfamilies relative to small superfamilies, 

and because finding correct relations in larger superfamilies is more difficult, 

quadratic coverage is generally larger than linear coverage, which in turn is 

larger than unnormalized coverage. 

Bootstrapping Provides Significance of Coverage Versus Error 

The CVE line for any two search method/parameter set pairs will likely differ.  

Therefore, to determine which method is superior at a given error rate, it is a 

straightforward matter to pick a suitable error rate and rank methods by the 

coverage generated.  However, the significance of any difference between two 

coverage levels is not immediately apparent.  In order to address the question of 

performance difference significance, we implemented the bootstrap strategy 

described in Figure 6.6a.  In brief, the database in question is sampled randomly 

with replacement n times, where n is the number of sequences in the database.  

Based on the results of this sampling a new, bootstrap database is constructed in 

which each sequence is represented 0, 1, or more than 1 times. 

The alignment results between the two methods being compared are then 

recomputed, but restricted to only those sequences that were sampled and 

repeated if the sequence was sampled multiple times. The difference in coverage 

between methods is calculated for each bootstrap replicate to generate a 

distribution of this statistic. If there is a consistent difference between methods 

in an overwhelming majority of the bootstrap replicates, then we can conclude 

that this difference is significant. We use a 95% confidence interval to declare 
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that two methods vary in their ability to detect homologs at the error rate under 

consideration. 

An interesting consequence of using the standard bootstrap is that the 

original coverage versus EPQ line, i.e., the line that corresponds to sampling 

each sequence once and only once, invariably falls toward the higher coverage 

end of the bootstrap distribution in normalized results (Figure 6.6a).  We 

determined that this is the case because during bootstrap sampling, by chance, 

some of the smaller superfamilies are not sampled or sampled only once.  When 

this happens, no relations remain for that superfamily.  Since the easier relations 

to detect are primarily within the smaller superfamilies, the effect of eliminating 

them will be felt more emphatically when results are normalized by superfamily 

size.  As a consequence of this bootstrap artifact, the bootstrap average of 

coverage at a given error rate is not in agreement with the coverage at the same 

error rate in the underlying data.   

A solution to this problem was subsequently developed by Gavin 

Crooks, Gavin Price and me. This solution is an implementation of the Bayesian 

bootstrap (233), a Bayesian resampling procedure that is operationally similar to 

the standard nonparametric bootstrap (Figure 6.6b).  In the standard bootstrap, 

resampling with replacement in effect assigns to each sequence integer weights 

that are drawn from a multinomial distribution. In the Bayesian bootstrap, the 

sequences are assigned continuously varying weights drawn from a Dirichlet 

distribution. Because the sequence weights are continuously varying there is a  
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Figure 6.6  Standard and Bayesian bootstrap procedures.  (a) In the standard bootstrap procedure, 
the database is sampled with replacement a number of times equal to the number of sequences it 
originally contains.  This generates a bootstrap replica database with some sequences left out and 
others repeated.  CVE statistics for the replica database are generated for each round.  During 
each round, the statistic of interest for the two methods being compared is calculated. For the 
results presented in this study, the statistic is the difference in coverage at 0.01 errors per query. 
(b) In the Bayesian bootstrap, weights are  randomly assigned to each sequence in each round of 
sampling. No sequences are left out, so all superfamilies are included. Comparisons are done as 
above.
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vanishingly small chance of assigning a zero weight to any sequence. 

Consequentially, the Bayesian bootstrap does not undersample small 

superfamilies and we do not expect, and do not observe, the strong replica bias 

exhibited by the standard bootstrap (Figure 6.7). In addition, this Bayesian 

bootstrap procedure has a clear interpretation. The Dirichlet distribution is 

conjugate to the multinomial and consequentially is frequently used as the prior 

and posterior distribution for multinomial sampling with replacement. 

Therefore, we can think of the ensemble of Bayesian bootstrap replicas, and the 

distribution of statistics derived from them, as samples from Bayesian posterior 

distributions (88). One further, critical refinement was implemented in the 

Bayesian bootstrap procedure. Instead of comparing the difference of the means 

of two bootstrap distributions, we now use the mean of the differences. This is 

necessary because the performance of one method on a given bootstrap replicate 

is not independent of the performance of a second method. In other words, a 

difficult replicates for one method is likely to be a difficult replicate for another 

method. Procedurally, this requires that any given comparison of methods be 

performed together on the same ensemble of Bayesian bootstrap database 

replicates, as was done. 

Similarity Search Methods Evaluated 

We set out to evaluate several of the most commonly used pairwise search tools 

(Table 6.1).  All were downloaded from the source given in Table 6.1, compiled  
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Figure 6.7 Demonstration of the difference between a standard and Bayesian bootstrap using the 
optimal parameter settings for the BLOCKS 13+ BLOSUM matrix family and the test dataset.  (a) 
The standard bootstrap preferentially selects sequences from larger, more diverse superfamilies 
where the correct sequence relationships are harder to discover. Thus, when each superfamily 
possesses the same amount of possible coverage (quadratic normalization), the bootstrap is biased 
towards the left because smaller superfamilies often drop out of the analysis entirely. Linear 
normalization displays a less severe effect. Since larger superfamily relationships are harder to 
discover, when the superfamilies have equal total weight (quadratic normalization) the coverage is 
much higher than with no normalization. To a lesser degree, the same effect is observable with 
linear normalization. The bottom graph makes clear that the standard bootstrap also over-predicts 
the variance under normalization. (b) As the Bayesian bootstrap assigns non-integer weights to 
each sequence, smaller superfamilies will not drop out of the analysis. This eliminates the bias 
and over-predicted variance of the standard bootstrap.
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and installed per documented instructions, and run on Linux systems using 

default options, except where otherwise noted. 

Results 

Parameter Optimization and Pairwise Method Evaluation 

In order to conduct as unbiased a test as possible, we partitioned our test 

database into two, non-overlapping databases (Figure 6.3).  Each pairwise 

method was then evaluated on the training database using a range of 

substitution matrices and gap parameters.  The training phase was conducted 

by searching gap opening and gap extension parameter space around the values 

found previously to be optimal (109).  For each pairwise search method, we 

chose the parameter set that generated the highest coverage at 0.01 EPQ under 

linear normalization for further evaluation.  These matrices and parameters 

explored and the optimal parameter sets are given in Table 6.2.  It is worth 

noting that the highest coverage yielding parameter set at 0.01 errors per query 

may not necessarily be best at other error rates.  However, in all cases, the top 

scoring parameter set at 0.01 errors per query was among the best at errors per 

query rates in the range of 0.001 to 10.   

 To determine the significance of the performance differences of each of 

the four pairwise search methods, we performed database-versus-database 

searches using the test database and the optimal parameter sets listed in Table 

6.2.  Results were compiled and are presented as CVE plots in Figure 6.8 in 

unnormalized, linearly normalized, and quadratically normalized format.  It is  
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Pairwise 
search 
method 

Version Location 

NCBI 
BLAST 

2.2.10 
[Oct-19-2004] 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/ 

WU-
BLAST 

2.0MP-WashU 
[06-Apr-2005] 

http://blast.wustl.edu/ 

FASTA3 3.4t25 
Nov 12, 2004 

http://fasta.bioch.virginia.edu/ 

SSEARCH3 3.4t25 
Nov 12, 2004 

http://fasta.bioch.virginia.edu/ 

 
Table 6.1.  Pairwise methods evaluated.  The version number and download source for 

each program is also given. 
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interesting that when the results are normalized for superfamily size, the 

coverage invariably increases.  This indicates that for any of these methods it is 

more difficult to detect the relations within larger superfamilies; de-

emphasizing larger superfamilies increases coverage.  As expected, the SSEARCH 

algorithm, which fully explores the alignment space, finds the most 

relationships over most error rates.  The popular NCBI BLAST, finds the fewest.  

The relative order of performance between these four methods is largely 

unchanged under each normalization scheme across the range of error rates. 

We bootstrap sampled the CVE data from the pairwise alignment results 200 

times.  SSEARCH outperforms the heuristic methods under each normalization 

scheme, and the difference is significant.  Interestingly, the differences between 

each method do not vary much under the various normalization schemes, 

indicating that the large superfamily bias affects each method roughly equally. 

We examined the size distribution of superfamilies within our test dataset to 

further investigate the correlation between superfamily size and ability to detect 

remote homologs.  Figure 6.9a shows the distributions of superfamilies, by size, 

within the test database.  Note that the most populous superfamily size is one.  

These superfamilies are important in that there are no relations to detect within 

them.  Therefore, they serve only as decoys within these experiments, i.e., they 

can contribute to the errors but not to the coverage.  There is a strong negative 

correlation between superfamily size and number of superfamilies. That is, 

there are more smaller superfamilies and fewer larger superfamilies. This trend  
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Pairwise 
search 
method 

Matrix Gap parameters (open, extension) Optimal 

BLOSUM50 (15,1), (16,1), (17,1), (18,1), (19,1) 
(12,2), (13,2), (14,2), (15,2), (16,2) 
(9,3), (10,3), (11,3), (12,3), (13,3) 

BLOSUM62 (9,1), (10, 1), (11,1), (12,1), (13,1) 
(6,2), (7,2), (8,2), (9,2), (10,2), (11,2) 

NCBI 
BLAST 

BLOSUM80 (9,1), (10,1), (11,1) 
(6,2), (7,2), (8,2), (9,2), (13,2), (25,2) 

BLOSUM62 
(12,1) 

BLOSUM50 (13,1), (14,1), (15,1), (16,1) 
(10,2), (11,2), (12,2), (13,2), (14,2), 

(15,2), (16,2) 
(9,3), (10,3), (11,3), (12,3), (13,3), 

(14,3), (15,3), (16,3) 
BLOSUM55 (14,1), (15,1), (16,1) 

(11,2), (12,2), (13,2), (14,2), (15,2), 
(16,2) 

(9,3), (10,3), (11,3), (12,3), (13,3), 
(14,3), (15,3), (16,3) 

WU-BLAST 

BLOSUM62 (9,1), (10,1), (11,1), (12,1) 
(7,2), (8,2), (9,2), (10,2), (11,2), (12,2) 
(6,3), (7,3), (8,3), (9,3), (10,3), (11,3), 

(12,3) 

BLOSUM62 
(10,2) 

VTML150-
VTML250 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

BLOCKS13 
BLOSUM55 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

BLOCKS13 
BLOSUM60 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

FASTA3 

BLOCKS13 
BLOSUM65 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

VTML190 
(12,1) 

VTML230-
VTML250 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

BLOCKS13 
BLOSUM55 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

BLOCKS13 
BLOSUM60 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

SSEARCH3 

BLOCKS13 
BLOSUM65 

(11,1), (12,1), (13,1), (14,1), (15-1) 
(11,2), (12,2), (13,2), (14,2), (15-2) 

VTML240 
(11,2) 

 
Table 6.2.  Substitution matrix and gap parameter space explored and optimums. Each 

method was run on the training database using each matrix and gap parameter set 

shown. The VTML matrix ranges are shown. For example, VTML230-VTML250 

indicates use of VTML230, VTML240, and VTML250. 
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Figure 6.8 Coverage versus errors per query (CVE) plot comparison of pairwise database search 
methods. Each program was used with optimal parameters to search the test database. The CVE 
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SSEARCH finds the most pairwise relations for most error rates, including 0.01 errors per qery. 
NCBI BLAST finds the fewest. For all methods, normalizing the results gives increased
coverage, indicating that relations in larger superfamilies are more difficult to detect.
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Figure 6.9 Superfamily size distribution in test database. (a) The number of superfamilies of 
increasing number of members is shown. Superfamilies with only a single member, the most 
numerous group, have no evolutionary relationships to detect. Not shown are the several super-
families with more than 40 members. (b). The fraction of correctly identified relations at 0.01 
errors per query is shown as a function of superfamily size. Generally, the relations within larger 
superfamilies are more difficult to detect than those within smaller superfamilies. These data were 
generated using the SSEARCH program with optimal parameters. 
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is also present within the training database (data not shown). Also, not shown in 

Figure 6.9a are the few very large superfamilies present within the test database. 

The largest superfamily within the test database is the NAD(P)-binding 

Rossmann-fold, containing 132 members.  Within this superfamily, there are 

17292 relations, as compared to the 662 relations within all the 331 superfamilies 

of size 2, representing 662 sequences, in the test database. 

To further investigate the general effect of apparently poor homolog 

detection within larger superfamilies, we broke down the results of the 

pairwise-test database search using SSEARCH with optimal parameters (Figure 

6.9b).  As expected from the normalization trend, there is a general negative 

correlation between superfamily size and percentage of relationships identified. 

Statistical Score Evaluation 

In addition to being able to differentiate between related and non-related 

sequences, similarity detection methods should also give the user a reliable 

estimation of the significance of any similarity detected.  This is especially 

important when a newly discovered sequence is used as a query and the user 

can not be sure that it has any homologs within the search database.  Each of the 

pairwise methods evaluated is capable of generating E-value statistical 

significance scores.  The interpretation of an E-value is the number of matched 

pairs one would expect by random chance that are as good as or better than the 

one reported, given the database search performed to find it. 
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To determine the reliability of the E-value significance scores generated 

by each method, we further analyzed the results of the database searches 

performed by each method using optimized search parameters.  For each 

incorrectly identified relationship (false positive) we plotted the E-value at 

which it was reported.   One should expect to find, for example, one false 

positive at E-value one per database query.  The results of this experiment are 

shown in Figure 6.10.  The E-values generated by SSEARCH, FASTA, and NCBI -

BLAST are remarkably close to the ideal line.  WU-BLAST, on the other hand, 

consistently underestimates the significance of the database hits it generates. 

 Also of note, at higher error ranges, each method converges on a line 

nearly parallel with the idealized score.  While some methods consistently 

overstate or understate the significance of their results, all methods generate E-

values that are at least in direct linear proportion to the number of false 

positives generated.  This beautiful statistical result may be, in part, due to the 

composition of the database sequences used for this evaluation.  ASTRAL 

sequences are all single domain sequences of known structure – typically 

soluble and globular, and thus generally well-behaved. 

Database Growth 

It is intuitively unclear how database growth will affect the performance of 

similarity detection methods.  As databases grow, it becomes more likely that 

there will be present at least a single related sequence for any given query.  
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However, the most useful statistical score, the E-value, can be adversely affected 

by database growth (251).  Even though the raw alignment score for any pair of 

sequences will not change as databases grow, the E-value significance does.  

This is because E-values are calculated as a function of the size of the database 

that was searched. 

Figure 6.11a shows the growth of the number of solved structures within 

the PDB compared with the number of superfamilies within recent SCOP releases.  

The number of solved structures is growing at a faster rate than the number of 

superfamilies.  This means that newly solved domain structures are more often 

being classified into existing superfamilies than they are defining new 

superfamilies.  For this reason, many superfamilies are growing and, as shown 

in Figure 6.9b, this has a negative impact on the ability to detect all true 

homologs at a given error rate.  It was previously shown that with each 

subsequent release of SCOP and ASTRAL, from version 1.35 to version 1.57, the 

coverage at all errors rates decreased (109). To determine if this trend still holds, 

NCBI-BLAST searches using default parameters were done to generate CVE plots 

from the ASTRAL databases, filtered at 40% sequence identity, corresponding to 

each of the last six SCOP releases.  As shown in Figure 6.11b, the relationships 

within each subsequent astral database release are more difficult to detect than 

those of the previous database, up to version 1.61 which continues the trend 

evident since the first SCOP release (109). However, starting at version 1.63, the 

trend has reversed. It is not clear to what this reversal is attributable, though.  
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One possibility is that there has been a shift in emphasis in what structures are 

being solved and therefore, in what sequences are added to these structure-

derived databases. Another possibility is that SCOP itself has changed. The SCOP 

release notes for versions 1.63 and 1.65 mention that several parts of the SCOP 

classification have been restructured. 

Discussion 

 The power, speed, and accessibility of pairwise sequence comparison 

programs have made them some of the most important methods – experimental 

or computational – for biological discovery.  We have evaluated the merits of 

the latest versions of several of these programs and found that using the latest 

versions of tools that address the effect of database compositional bias and 

allow the significance of performance differences to be measured. 

 The rigourous SSEARCH program detects a significantly greater fraction of 

the relations between remote homologs than any of the heuristic methods.  

Further, the significance scores reported by SSEARCH are remarkably reliable.  

However, the price for these benefits is a significant time penalty. 
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CHAPTER 7 
 

Pairwise alignment incorporating dipeptide covariation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  Much of the material presented in this chapter was included in the 
publications: 
 
Crooks, GE, Green RE, and Brenner SE.  Pairwise alignment incorporating 
dipeptide covariation Bioinformatics. (submitted). 
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Introduction 

Among the most commonly used tools in computational biology are the 

pairwise protein sequence alignment methods, such as SSEARCH, FASTA and 

BLAST (12, 220, 248). These algorithms are elegant, efficient and effective 

methods of detecting similarity between closely related protein sequences.  

However, the ability of fast pairwise methods to detect homology deteriorates 

as the divergence between the sequences increases.  Past the “twilight zone” (20-

30% pairwise sequence identity), only a small fraction of related proteins can be 

found (37, 83, 234).  Therefore, in order to make better use of the vast and 

increasing amount of available biological sequence data, there is an immediate 

need for more sensitive, fast database search methods. 

For the sake of computational efficacy, current pairwise alignment 

methods make several simplifying assumptions. First, amino acid substitutions 

are assumed to be homogeneous between protein families.  The most commonly 

used substitution matrices (BLOSUM (117) and PAM (79)) are thus generic 

models of protein sequence evolution across all protein sequence families at 

various evolutionary distances.  Second, substitutions at a given site are 

assumed to be uncorrelated with those on neighboring sites.  That is, the 

likelihood of substituting an amino acid, X, for amino acid Y is assumed to be 

independent of the sequence context of X.  It is known that both of these 

simplifying assumptions introduce errors into homology searching.  Relaxing 

the assumption of homogeneous substitution across protein families can 
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significantly improve the performance of pairwise alignment methods (281). 

Furthermore, alignment methods that remove the assumption of homogeneity 

among different positions in the sequence, and instead model the heterogeneity 

of the given protein family, have been found to be dramatically superior for 

remote homology detection (R. E. Green and S. E. Brenner, unpublished 

data)(214).  Unfortunately, these profile methods (PSI-BLAST (13), HMMER 

(90), SAM (140), etc.) are not tractable for all query sequences.  They require the 

presence, identification, and correct alignment of homologous sequences in 

order to generate a model of the query sequence's family.  Therefore, the fast, 

easy to use, and universally applicable pairwise methods remain widely used 

for database searching, despite their lower sensitivity. 

One proposed strategy for increasing the sensitivity of pairwise 

alignment is to use a more sophisticated scoring function for amino acid 

substitutions, namely one that is sensitive to the sequence context in which the 

residue reside.  For example, amino acid sequences are correlated with 

secondary structural features, such as helixes and loops, which can directly lead 

to structure (and therefore sequence) dependent substitution patterns (105, 263, 

264).  Similarly, one might intuitively expect structurally and functionally 

important residues, such as cystines and prolines, to be more or less conserved 

depending on their local sequence environment and the prevalence of particular 

motifs.  
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The first large-scale exploration of the effect of sequence context on 

amino acid evolution was performed by Gonnet and co-workers (106), who 

examined the frequencies of dipeptide substitutions, and compared them to the 

dipeptide substitution frequencies expected assuming no sequence dependent 

correlations.  Despite the fact that nearly half of the elements of the 400 X 400 

observed dipeptide matrix were vacant (due to the sparsity of data) several 

interesting patterns were evident.   

More recently, Jung and Lee (134) have taken advantage of the large 

increase in available data to reexamine trends in dipeptide evolution.  They 

used the observed patterns of substitution within a large set of structure-based 

alignments to generate dipeptide substitution matrices.  Furthermore, they 

developed an extension to the standard Smith-Waterman alignment algorithm 

that incorporates a term from these dipeptide matrices.  By using sequence and 

structure context information, they show some improvement in homolog 

detection in a limited test set.  However, their method could not be extensively 

tested, or practically utilized, because an efficient dynamic programming 

method for finding the optimal alignment was not known to the authors.  

Instead, they adopted a heuristic search that is not guaranteed to find optimal 

alignments. 

In this study, Gavin Price and I have extended the work described above 

by examining the strength of local, dipeptide substitution correlations using the 

massive amount of alignment data within the BLOCKS database.  We have also 
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extended the standard Smith-Waterman algorithm to include local dipeptide 

correlation information over a user-defined distance.  Like Smith-Waterman, 

this new polynomial time algorithm, doublet, finds the optimal alignment under 

the scoring scheme described.  Using a standard remote homolog detection 

evaluation strategy, we have tested doublet against the Smith-Waterman 

algorithm to measure the impact of including this extra information.  Perhaps 

surprisingly, we found that incorporating doublet substitution correlations 

leads to a statistically insignificant difference in homology detection. Gavin was 

responsible for deriving the doublet substitution matrices. I performed the 

remote homolog evaluation. We jointly conceived and designed the doublet 

algorithm. 

Results 

Doublet Substitution Correlations 

Various trends are evident within the doublet score matrix, as illustrated in 

Figure 7.1. Notably, exact conservations, such as AA↔AA, AD↔AD and 

DD↔DD, etc., generally have positive scores. In other words, conserved 

residues are more likely to be located near other conserved residues than would 

be expected from uncorrelated substitutions. Also notable is that many (but far 

from all) exact swaps, such as DA↔AD, are significantly more likely than 

expected. Possibly, this is because the effect of a deleterious mutation X→Y can 

sometimes be ameliorated by the occurrence of the corresponding mutation 

Y→X, in the immediate sequence neighborhood. Partial swaps, where only one  

 139 
 

 



A R N D C Q E G H I L K M F P S T W Y V B Z X
A 6 -1 -2 -2 -2 -1 -1 0 -2 -2 -2 -2 0 -2 -1 1 0 -3 -3 0 -2 -1 -1
R -1 7 0 -1 -4 2 1 -3 0 -3 -3 3 -2 -3 -2 -1 -1 -2 -2 -3 0 1 -1
N -2 0 8 2 -3 1 0 0 1 -3 -3 0 -2 -3 -1 1 0 -2 -2 -2 5 0 -1
D -2 -1 2 9 -4 1 3 -1 -1 -4 -4 0 -3 -4 -1 0 -1 -3 -3 -3 6 2 -1
C -2 -4 -3 -4 16 -4 -4 -4 -3 -3 -3 -4 -2 -2 -4 -2 -3 -3 -3 -2 -3 -4 -3
Q -1 2 1 1 -4 6 3 -2 0 -3 -2 2 -1 -3 -1 0 0 -2 -2 -2 1 4 0
E -1 1 0 3 -4 3 7 -3 -1 -3 -3 1 -2 -4 0 -1 -1 -3 -3 -3 2 5 -1
G 0 -3 0 -1 -4 -2 -3 9 -3 -5 -5 -2 -3 -4 -2 0 -2 -3 -4 -4 -1 -2 -2
H -2 0 1 -1 -3 0 -1 -3 13 -4 -4 0 -3 -2 -2 -1 -2 -2 1 -3 0 0 -1
I -2 -3 -3 -4 -3 -3 -3 -5 -4 6 3 -3 2 1 -3 -3 -1 -2 -2 4 -4 -3 -1
L -2 -3 -3 -4 -3 -2 -3 -5 -4 3 6 -3 3 2 -3 -3 -2 0 -1 1 -4 -3 -1
K -2 3 0 0 -4 2 1 -2 0 -3 -3 7 -2 -3 -1 -1 -1 -2 -2 -3 0 2 -1
M 0 -2 -2 -3 -2 -1 -2 -3 -3 2 3 -2 7 1 -3 -2 -1 0 -1 1 -3 -2 -1
F -2 -3 -3 -4 -2 -3 -4 -4 -2 1 2 -3 1 9 -3 -3 -2 3 4 0 -3 -3 -1
P -1 -2 -1 -1 -4 -1 0 -2 -2 -3 -3 -1 -3 -3 11 0 -1 -2 -3 -2 -1 -1 -1
S 1 -1 1 0 -2 0 -1 0 -1 -3 -3 -1 -2 -3 0 5 2 -2 -2 -2 0 0 0
T 0 -1 0 -1 -3 0 -1 -2 -2 -1 -2 -1 -1 -2 -1 2 6 -1 -2 0 0 0 0
W -3 -2 -2 -3 -3 -2 -3 -3 -2 -2 0 -2 0 3 -2 -2 -1 16 4 -2 -3 -2 -1
Y -3 -2 -2 -3 -3 -2 -3 -4 1 -2 -1 -2 -1 4 -3 -2 -2 4 11 -2 -2 -2 -1
V 0 -3 -2 -3 -2 -2 -3 -4 -3 4 1 -3 1 0 -2 -2 0 -2 -2 6 -3 -2 -1
B -2 0 5 6 -3 1 2 -1 0 -4 -4 0 -3 -3 -1 0 0 -3 -2 -3 6 1 -1
Z -1 1 0 2 -4 4 5 -2 0 -3 -3 2 -2 -3 -1 0 0 -2 -2 -2 1 5 -1
X -1 -1 -1 -1 -3 0 -1 -2 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 0

1 2 3 4 5

AA AA 2 0 2 1 0
AD AD 2 2 1 1 1
AD DA 4 3 3 3 2
DA DA 1 1 2 3 2
DD DD 0 3 3 3 2

CA AD 3 0 1 2 0
CA AC 7 3 5 2 3
CA AQ 3 -1 0 1 -1

PI LF 1 -1 0 -1 -1
PI LP 5 4 3 2 0
PI LS 2 3 1 1 0

RA AA 0 1 -2 -2 -1
RA AR 2 1 2 2 2
RA AN 0 -1 0 1 1

PC CG 10 6 6 16 2
PC CL 8 4 4 8 3
PC CK 14 3 6 14 -5
PC CP 15 4 4 13 1

1 2 3 4 5

CC CA -3 -1 -9 -1 0
CC CR 0 2 -4 -1 2
CC CN -1 0 -11 -3 1
CC CD -1 -1 -10 -3 0
CC CC 2 0 -3 -1 -2
CC CQ -2 0 -4 -3 1
CC CE 0 0 -7 -3 0
CC CG -3 -2 -9 -3 -1
CC CH -4 -1 -5 -2 -1
CC CI -1 -2 -13 -2 -2
CC CL -3 -2 -10 1 -2
CC CK -1 3 -9 -1 3
CC CM -2 0 -13 2 -1
CC CF -4 -2 -16 7 -2
CC CP 0 -4 -12 -3 -1
CC CS -2 -2 -10 -1 0
CC CT -1 -2 -10 1 1
CC CW -4 -2 -11 2 -3
CC CY -5 1 -2 6 0
CC CV -2 -4 -8 -2 -2

1 2 3 4 5

ET AA 0 0 -1 -1 0
ET AR 0 -1 1 1 1
ET AN 1 -2 0 1 0
ET AD 1 0 1 1 1
ET AC 1 1 2 0 2
ET AQ 1 -1 0 1 0
ET AE 2 0 1 2 1
ET AG 0 0 -1 -2 -1
ET AH 0 0 -1 0 0
ET AI 0 -1 0 0 -1
ET AL 0 1 -1 -1 0
ET AK -1 -2 0 2 0
ET AM 0 -1 -2 -1 -2
ET AF 0 0 0 -1 -1
ET AP 1 0 0 0 0
ET AS -1 -1 0 0 1
ET AT 0 1 -1 -1 -1
ET AW -1 0 -2 -1 -1
ET AY -1 0 0 1 1
ET AV 0 -1 0 1 0

BLOSUM65 (from BLOCKS 13+)

Singlet Substitutions

Doublet Substitutions (Selected entries)
L L L

Figure 7.1 BLOSUM65 singlet substitution matrix derived from the BLOCKS 13+ database 
(above), and selected elements of the corresponding doublet substitution matrices (below). Scores 
are in 1/4 bit units, rounded to the nearest integer. The average standard statistical error is about 
1/4 bits (i.e. about 1 unit) for the doublet scores, and essentially insignificant for the singlet 
scores, as judged by bootstrap resampling. The singlet scores are the log odds of observing the 
given substitution; positive scores are more likely, and negative score less likely to be observed 
than would be expected for uncorrelated sequences (Eq. 3). Similarly, the doublet scores represent 
the log odds for observing pairs of substitutions, at various sequence separations, relative to the 
singlet substitutions likelihood (Eq. 6). For example, the L=3 column for ET AV (bottom right) 
indicates a score of zero for the alignment of ExxT in one sequence to AxxV in the other.
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of the substitution pair is conserved, are also often positive. This might reflect 

alignment errors in the original dataset. The most highly positive scores (and 

therefore those events that are most over-represented in the data relative to 

uncorrelated substitutions) are associated with the substitutions PC↔Cx, i.e. a 

translocation of a cystine, replacing a proline.  The most relatively uncommon 

substitutions involve the mutation of one cystine in the cystine pair CxxC 

(second column), a widespread and important motif found, for example, in the 

thioredoxin family. However, these interesting particular cases are atypical. 

Most of the doublet substitution matrix is similar to the ET↔Ax substitutions 

displayed in the third column; the majority of the scores are not significantly 

different from zero, indicating that most possible substitution doublets are 

essentially uncorrelated. 

We can place the above observations on a quantitative footing by considering 

the inter-sequence mutual information, a measure of the correlation strength 

between aligned homologous sequences. The first order contribution is equal to 

the average singlet score, which is 0.31 bits per aligned residue for BLOSUM65 

(BLOCKS13+) (117, 119). The corresponding average doublet score, the 

additional information encoded in inter-site substitution covariation, is around 

0.04 bits at modest sequence separations (illustrated in Figure 7.2). Thus, the 

inter-site substitution correlations carry relatively little information. However, 

these correlations appear to persist to non-local neighbors, suggesting that the 

total information from interactions at all sequence separations is  
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-0.02
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L

Mutual Information (bits)

Total Doublet Information

Conserved

Swap

Partial Swap

Partial Conservation

Unconserved

Figure 7.2 The inter-sequence mutual information of homologs encoded in inter-site correlations 
at increasing separation, L. In other words, the average doublet substitution scores (Eq. 7). The 
top, dark line is the total information at various sequence separations. For comparison, the 
information encoded in the corresponding singlet substitutions (the average singlet matrix score) 
is 0.31 bits per residue. The remaining lines illustrate the relative contributions of different 
substitutions classes to this total information; these are exact conservation XY       XY, partial 
conservation XY       XZ, swaps XY       YX, partial swaps XY       ZX, and unconserved, double 
substitutions XY       ZU.
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substantial. However, Figure 7.2 also displays the contributions to this total 

information from various categories of substitution. The largest contribution, 

and the only contribution to persist above a sequence separation of 4 residues, 

represents exactly conserved pairs of residues. This is a rather trivial correlation 

(it simply indicates that conserved residues cluster), and its persistence suggests 

that, in large part, these correlations may simple be an artifact of the way in 

which the BLOCKS sequence alignments have been generated. All other 

substitution classes, summing over all sequence separations, contribute no more 

than 0.1 bits per residue. This is not entirely insignificant, but it is still small 

compared to the singlet mutual information. Thus non-trivial correlations 

between substitutions are relatively weak. 

Homology Detection 

The primary use for pairwise alignment methods is to search databases of 

previously characterized biological sequences for homologs of the sequence of 

interest.  Therefore, the most powerful methods will perform this task most 

effectively by assigning true homologs significant statistical scores and 

assigning unrelated sequences low statistical scores. Our assessment 

methodology compares database search methods on this criteria. 

We compared the doublet alignment algorithm against the standard 

Smith-Waterman algorithm.  To perform a fair test, we converted raw scores to 

statistical scores for both algorithms using the same length normalized 

maximum likelihood EVD parameter determination method (18). Optimal 
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parameters for gapping, matrix scaling, and distance over which to consider 

dipeptide correlations were found using the training database described above.  

Then, the algorithms were evaluated by comparing the relative ability to detect 

remote homologs within the test dataset, using the parameters optimized on the 

training dataset (Figure 7.3).  

The results of a database search for Smith-Waterman and doublet, using 

only nearest neighboring dipetide covariations, are shown in Figure 7.3a. Both 

the Smith-Waterman and doublet methods performed remarkably similarly 

over all error rates and normalization schemes.  The linearly normalized 

coverage at 0.01 errors per query was slightly higher for Smith-Waterman than 

doublet (Figure 7.3).  From this, we conclude that including dipeptide 

covariation information does not improve remote homology detection and, in 

fact, slightly degrades performance at this error rate.  We also performed the 

same coverage versus errors per query analysis using only sequences with less 

than 30% sequence identity (Figure 7.3b), as it was previously reported that 

dipeptide covariation information may be useful only for detecting these 

extremely remote evolutionary relationships (134).  Our results, however, show 

that even at this evolutionary distance, dipeptide covariation scoring does not 

improve homology detection. 

We used Bayesian bootstrap resampling to estimate statistical errors, and to 

determine if the observed coverage difference was statistically significant. We 
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Figure  7.3. These coverage versus errors per query plots show that including dipeptide covaria-
tion information in alignment determination (Doublet) does not improve remote homolog detec-
tion. (a) Optimized matrix, gap and look-back parameters were used to search the test database 
with the doublet and Smith-Waterman algorithms. This database contains no sequence pairs that 
share more than 40% sequence identity. The number of correctly identified homologs is shown as 
a function of the number of errors made. Smith-Waterman outperforms doublet over all but 
extremely low error-rates. (b) Remote homolog test using only sequence pairs with less than 30% 
sequence identity. As above, Smith-Waterman correctly identifies more remote homologs than the 
doublet algorithm. Insert: Optimal matrix scale parameter, gap parameters, and corresponding 
linearly normalized homology detection coverage at 0.01 EPQ, as a function of the covariation 
distance considered, L.
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found that a 95% confidence interval for the coverage difference at 0.01 errors 

per query comfortably contained zero difference. Therefore, we cannot 

distinguish between the remote homolog detection abilities of Smith-Waterman 

and doublet. 

We also evaluated the effect of including covariation information over 

larger sequence separations. As can be seen in the table of Figure 7.3, 

incorporating this additional information into alignment scores actually results 

in a slow degradation of homology detection efficacy. 

Discussion 

We have developed, implemented, and tested an alignment algorithm, doublet, 

that generates the optimal pairwise protein sequence alignment under a scoring 

scheme that includes dipeptide covariation information.  Perhaps surprisingly, 

and in marked contrast to previous reports, we found that using this 

information provides no benefit to remote homolog detection.  The performance 

of the doublet algorithm for detecting remote homologs is statistically 

indistinguishable from the standard Smith-Waterman algorithm.   

The underlying explanation for this indifference of alignment to 

dipeptide covariation is that substitution correlations are weak on the average 

(Figures 7.1 and 7.2).  Therefore, the average effect of these interactions is 

insignificant and including covariation in sequence alignment makes very little 

material difference to remote homology detection. 
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We might reasonably question if the training data is at fault. Indeed, the 

slight degradation of homology detection as more distant correlations are 

included (Figure 7.3) does indicate that the doublet substitution matrices 

contain anomalies, perhaps due to the training or alignment of the BLOCKS 

sequences, or perhaps because of the different sampling of sequences included 

in BLOCKS compared to those included in SCOP. The BLOCKS database that 

we use to train the doublet substitution matrices contains ungapped alignments, 

many of shorter length than the average SCOP protein domain.   Fikami-

kobayashi and co-workers showed that the covariation signal is strongest within 

single secondary structure elements (100). The poor performance of doublet, 

then, may be due to its applying the covariation model too bluntly across entire 

protein sequences when it is only applicable within secondary structure 

elements. However, we note that the BLOCKS database has been used to derive 

very effective singlet substitution matrices (109), and therefore it is implausible 

that the substitution signals within the BLOCKS database are substantially 

erroneous.  Rather, the observed degradation simply reinforces the idea that 

neighboring substitutions are weakly correlated, particularly when compared to 

single substitutions correlations, and therefore the doublet signal is readily 

degraded by minor anomalies in the data.  

Another line of evidence comes from examining the inter-site amino acid 

correlation of single protein sequences (72, 74, 271). Neighboring amino acids 

are almost entirely uncorrelated; the nearest neighbor mutual information has 
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been estimate as only 0.006 bits (72). This lack of sequence correlation is 

consistent with (but does not require) small inter-site substitution correlations.  

In should be emphasized, however, that the observation of weak average 

dipeptide covariation does not negate the possibility of strong, interesting 

covariation in particular instances, such as CP↔Cx, or within particular 

families. Moreover, it is conceivable that covariation information could be used 

more judiciously, thereby improving alignment results.  For example, as 

previously discussed, one might include doublet-type scoring information only 

for residue pairs that are likely to be within the same secondary structural 

element. Similarly, one might examine the covariation of residues that are 

proximate in the tertiary structure, rather than along the sequence (170, 230). 

However, residues that are proximate in space are also weakly correlated (68, 

74), and the inter-residue mutual information is not improved by 

foreknowledge of the local structure environment (72, 74). Therefore, we suspect 

that such approaches will also not have dramatic effects on protein sequence 

alignment.  

In conclusion, the ubiquitous assumption that neighboring sites along a 

protein sequence evolve independently is generally appropriate. This leads to 

fast, elegant and effective algorithms for protein sequence alignment and 

homology detection. 

 

 

 148 
 

 



Materials and Methods 

Quantifying substitution correlations 

Consider two aligned, ungapped sequences, x = x1, x2, …, xn, and y = y1, y2, …, yn, 

both of length n, where each element  represents one of the 20 canonical amino 

acid, and corresponding positions are considered aligned and homologous. We 

wish to use the patterns of conservation and variation between these sequences 

to estimate the probability P(hom|x,y) that the sequences are homologous – i.e., 

that both sequences have descended from a common ancestor. By Bayes' 

theorem, we can re-express this probability as 

)y()x(
)y;x((hom))y,x|(hom

pp
qPP =  (1) 

Here,  p(x) is the background probability of the given amino acid segment and q(x;y) is 

the target probability of observing the pair of segments in diverged homologous 

sequences (5). By taking logarithms and dropping the additive constant log 

P(hom) we generate an additive score, S,  a measure of sequence similarity due 

to homology, 

),...,,(),...,,(
),...,,;,...,,(log

2121

12 21

nn

nn

yyypxxxp
yyyxxxqS =   (2) 

 

Except for very short segments, the background and target probability 

distributions are large and cannot be directly measured.  Therefore, Eq. 2 is 

typically simplified by assuming that substitutions probabilities are 

homogeneous (independent of the location in the fragment) and that both the 
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substitutions and the sequence themselves are uncorrelated from one position to 

the next. Consequentially, the total similarity score is now a sum of independent 

parts,  

)()(
);(log);(,);(
jpip

jiqjisyxsS
k

kk =≈ ∑  (3) 

The log odds of residue replacement, s(i, j ), is an element of a standard singlet 

substitution matrix, of the type widely used in pairwise sequence alignment (5). 

This approximation of the full similarity by a sum of singlet substitution scores 

requires that we neglect all inter-site correlations. We can perform a more 

controlled approximation by noting that a homogeneous multivariate 

probability can be expanded into a product of single component distributions, 

pairwise correlations, triplets correlations, and so on.  
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If we assume that substitution probabilities are independent of the location 

within the fragment, then we can apply this expansion to the segment homology 

score (Eq. 2).  
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The first term of this expansion represents single residue replacements, as in Eq. 

3. The next term defines the doublet substitution scores, 
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Here, i and i' are residues separated by a distance l along one amino acid chain, 

while j and j' are the corresponding aligned residues on the putative 

homologous sequence; ql(i,i';j,j') is the target probability of observing this 

aligned quartet, and pl(i,i') is the background probability of this residue pair in 

protein sequences. These DOUBLET scores represent the additional similarity due 

to correlations between substitutions.   

By truncating the expansion of the full similarity score at doublet terms (Eq. 5), 

we are assuming that triplet and higher order correlations between substitutions 

are relatively uninformative. For reasons discussed below, this is probably a 

reasonable approximation. Furthermore, the most important inter-site 

correlations are between residues neighboring on the chain (Fig. 7.2).  Therefore, 

we can restrict the maximum distance over which doublet interactions are 

scored without serious error. 

The average similarity score is the inter-homolog mutual information, I 

(71), a measure of the inter-sequence correlations. A high mutual information 

value indicates strong correlation, whereas a mutual information value of zero 

indicates uncorrelated variables. Mutual information has various advantages as 

a correlation measure: it is firmly grounded in information theory, it is additive 

for independent contributions and it has consistent, intuitive units (bits). 

∑= )y()x(
)y,x(log)y,x()y;x( 2

pp
qqI  (7) 

The average singlet score is the inter-homolog mutual information per residue, 

under the assumption that replacements are uncorrelated. This is frequently 
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reported as the "relative entropy" of the substitution matrix. The average 

doublet score is the first order correction to the inter-sequence mutual-

information due to inter-site correlations. Consequentially, we may evaluate the 

comparative importance of singlet and doublet contributions to the sequence 

similarity by examining the average contributions of these different components 

to the full inter-homolog mutual information.  

The preceding analysis applies to contiguously aligned sequence 

segments. However, in addition to substitutions, protein sequences are modified 

by the insertion and deletion of residues. Since it is not obvious how to capture 

the existence of indels in doublet scores, in the following discussion we assume 

that dipeptide correlations do not extend across gaps, and we adopt the simple 

and standard affine model of gap lengths. 

Alignment algorithm 

We have extended the standard Smith-Waterman optimal local sequence 

alignment algorithm (248) to incorporate doublet substitution scores (See Figure 

7.4).  The time complexity of Smith-Waterman is O(nm), where n and m are the 

lengths of the two sequences.  Adding doublet scores increases the complexity 

to O(nmL), where L is the distance over which substitution correlations are 

scored.  This efficient dynamic programming alignment is possible because, 

although we are scoring correlations between residues that are not directly 

aligned, these correlations are local along the chain. The space complexity of our 
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implementation is also O(nmL); this could be improved using standard 

techniques (88). 

The additional similarity score associated with adding the final match 

pair xi, yj to the alignment contains singlet (S) doublet (D) substitution scores; 

),,(),( ji yxsjiS =  (8) 
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Here, r is the length of the preceding contiguous segment of aligned residues, or 

the maximum sequence separation over which doublet correlations are scored, 

whichever is less. Deletions of length k are weighted with the affine penalty 

-(gopen + (k-1) gext), where gopen and gext are positive constants. This standard 

affine gap length model is both computationally efficient and surprisingly 

effective (10, 248, 283). 

The optimal, highest scoring alignment between two sequences 

(x=x1,x2,…, xn and y=y1,y2,…, ym) is found by populating a series of score tables, 

also known as dynamic programming matrices. The entries of the match table, 

M(i,j,r), are the maximum alignment score for an alignment that terminates with 

an ungapped segment of length r, ending at the ith position of x, and the jth 

position of y. Similarly, the gap tables Gx(i,j) and Gy(i,j) contain the maximum 

alignment similarity given that the alignment ends with xi or yj gapped. 

The entries of these tables can be efficiently computed starting from the 

following boundary conditions: M(i,0,l), M(0,j,l), Gx(i,0),  Gx(0,j), Gy(i,0) , Gy(0,j) = 
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-∞. A single aligned amino acid pair may signal the beginning of a new local 

alignment, or it may occur immediately after any alignment gap.  
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In standard Smith-Waterman this is the only necessary match score table. 

However, in doublet we require additional match tables so that we may keep 

track of match scores over extended, contiguously aligned regions. Of necessity, 

longer ungapped segments occur only after shorter segments. We restrict the 

maximum distance L over which doublet correlations are scored, since we 

expect that the useful information that can be extracted from doublet 

correlations will decay rapidly with sequence separation (See Figure 7.2). 

Consequentially, we do not need to explicitly consider ungapped segments of 

length greater than L+1. 
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Gaps in the alignment are either preceded by a match or they extend an existing 

gap. 
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Figure 7.4. A comparison of Smith-Waterman and doublet sequence alignment. (a) A Smith-
Waterman match table, with the optimal alignment highlighted. In value of each cell is the 
maximum of 1. the singlet match score (this is the start of an alignment ), 2. the singlet score plus 
the match score from the previous cell along the diagonal (this extends an aligned region), or 3. 
the singlet score plus the optimal score from a gap score table (the previous residue was not 
aligned) (b) For doublet, multiple match tables are used (Eqs. 10-12). The number of match tables 
is the distance over which dipeptide correlation information is considered (in this example, 2) 
plus 1. Again, the optimal alignment is highlighted. The top table corresponds to the starts of 
aligned regions, the middle table corresponds to aligned regions of at least 2 consecutive residues 
and the bottom table corresponds aligned regions of at least 3 consecutive residues. The align-
ment path through these tables falls through to lower tables in regions of conecutive aligned 
residues and begins again in the top table following gaps. To extend dipeptide context scoring 
over longer distances requires additional match tables.
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The largest score within the match table marks the last aligned position of the 

optimal alignment. The full alignment can be found by backtracking through 

the table, according to the choices previously made during the scoring step. 

We used the method of Bailey and Gribskov (18) to fit an extreme value 

distribution to the results of aligning a query sequence against a database of 

possible homologs. The maximum likelihood parameters are then used to assign 

E-values to each alignment. 

Doublet BLOcks Substitution Matrix 

A doublet substitution matrix (Eq. 6) contains 204 = 160,000 entries, of which 

202x(202+1)=80,200 are unique due to the underlying symmetry, 

dl(i,i';j,j')=dl(j,j';i,i'). To accurately estimate these scores we require a very large 

collection of reliably aligned protein sequences.  The BLOCKS database is one 

such resource (116, 117). Each database block consists of a reasonably reliable, 

ungapped multiple sequence alignment of a core protein region. BLOCKS 

version 13+ contains 11,853 blocks, containing, on average, 56 segments of 

average length 26 residues. Overall, about 109 pairwise amino acid comparisons 

are available for study. 

The widely used canonical BLOcks SUbstitution Matrices (BLOSUM) 

were generated from version 5 of the BLOCKS database (117). In order to 

generate a series of matrices representing different evolutionary divergences, 

the sequences in each block are clustered at a given level of sequence identity 

and the inter-cluster sequence correlations are collected. Thus BLOSUM100 

 156 
 

 



(where only 100% identical sequences are clustered) represents a wide range, 

including low levels, of evolutionary divergence, whereas BLOSUM30 

represents only correlations between very diverged sequences. 

In principle, we should match the divergence inherent in the substitution 

matrix to the divergence of the pair of sequences we wish to align (6). However, 

this is computationally expensive, and, in practice, a single matrix is chosen 

based on its ability to align remote homologs, on the grounds that matching 

close homologs is relatively easy (37, 73). In a recent evaluation of remote 

pairwise homology detection efficacy (109, 283), we discovered that the 

BLOSUM65 substitution matrix, re-parameterized from the BLOCKS 13+ 

database, was more effective than any other reparameterized BLOSUM 

(BLOCKS 13+), classic BLOSUM (BLOCKS 5) or PAM (79) substitution matrix, 

and was comparable to the most effective VTML matrix (200). Consequentially, 

we have used the BLOCKS 13+ database at 65% clustering to build singlet and 

doublet BLOSUM substitution matrices. This provides approximately  107 - 108 

independent aligned doublets, depending on the sequence separation l.  

The estimated doublet target frequencies ql(i,i' ; j,j') were smoothed and 

regularized by adding a pseudocount  α(i,i';j,j') to the raw count data, n(i,j';j,j'). 

The pseudocounts are taken to be proportional to the marginal singlet target 

probabilities, ql(i;j)ql(i',j'). 

NA
jjiinjjiijjiiql

+
≈

)',;',(_)',;',()',;',( α  (13) 

)';'();()',;',( jiqjiqAjjii ×=α  (14) 
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where N is the total number of counts. Thus, if no data are available (the total 

number of counts is zero, N=0), then all doublet scores would be zero, as can be 

seen from Eq. 6. Here, A is a scale parameter that determines how much data is 

required to overcome the prior probability inherent in the pseudocount. 

Typically, such scale factors are picked empirically. However, in this case, we 

performed a full Bayesian analysis, and determined that for doublet 

substitutions reasonable values of A are about 2 x 106, which can be compared to 

the 107 to 108 actual observations. The full details are given in the supplemental 

materials of this publication, and a representative subset of a doublet 

substitution matrix is shown in Figure 7.2. 

Standard statistical errors were estimated by non-parametric Bayesian 

bootstrap resampling on sequence blocks (91, 233). Instead of assigning equal 

weight to every sequence block, each block is instead given a random weight 

drawn form a Dirichlet distribution. This random reweighting induces random 

changes is the estimated scores, thereby providing an estimate of the statistical 

errors caused by the finite size and inhomogeneity of the training data. 

Evaluation of remote homology detection 

We have previously developed and applied a sensitive strategy for evaluation of 

database search methods (37, 109, 283). In our approach, each sequence is 

aligned against every other sequence, and the alignment scores are used to 

determine putative homologs. We then consider the proportion of correctly 

identified homologs as a function of erroneous matches. The collection of 
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related sequences is derived from the Structural Classification Of Proteins 

(SCOP) database (202). We use the ASTRAL compendium (39, 60) of 

representative subsets of SCOP release 1.61 (Sept. 2002), filtered so that no two 

domains share more than 40% sequence identity.  We partition every other 

SCOP fold into separate test and training subsets of approximately equal size, 

each containing about 550 superfamilies, 2500 sequences, and 50,000 

homologous sequence pairs. To avoid over-fitting, adjustable parameters are 

optimized using the training set. Results of an all-versus-all comparison of the 

test set, using these optimized parameters, are reported as a plot of coverage 

(fraction of true relations found) versus errors per query (EPQ), the total 

number of false relations divided by the number of sequences (See Figure 7.3). 

The raw, unnormalized coverage is the fraction of all true relations that are 

found. 

Since the number of relations within a superfamily scales as the square of 

the size of the superfamily, and because SCOP superfamilies vary greatly in 

size, this reported coverage is dominated by the ability to detect relations within 

the largest superfamilies. To compensate for this unwarranted dependence, we 

also report the average fraction of true relations per sequence (linear 

normalization) and the average fraction of true relations per superfamily 

(quadratic normalization). In general, large superfamilies are more diverse, and 

the relationships within them are harder to discover (109). Thus, unnormalized 

coverage is typically less than the linearly normalized coverage, which in turn is 
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less than quadratically normalized coverage. One important point of 

comparison for search results is 0.01 errors per query rate for linearly 

normalized results, the average fraction of true relations per database query at a 

false positive rate of 1 in 100. We report the observed difference in coverage of 

two methods at this selected EPQ, and determine standard statistical errors and 

confidence intervals using Bayesian bootstrap resampling (see Chapter 6). 
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CHAPTER 8 
 

Discussion and future directions of development and evaluation of remote 

homology detection methods 

 161 
 

 



As sequence and structure databases continue to grow, there will be an ever-

present need to improve and evaluate the computational methods that are used 

to identify the relationships between entries in these databases. Furthermore, as 

the more sensitive profile based methods like PSI-BLAST and HMMER are refined 

and gain acceptance, there will be an increasing need to understand their 

strengths and weaknesses. Therefore, the field of evaluating remote homolog 

detection methods should grow and adapt. Several ideas to improve evaluation 

of the existing pairwise methods have been offered and I will summarize them 

here. 

In our current scheme, we use single domain sequences whose 

evolutionary relationships have been defined. However, many of these domains 

are found in nature only in the context of multi-domain proteins. Further, 

databases that one might use to search for homologs, like SWISS-PROT or 

GenBank, typically contain a mix of single and multi-domain sequences. In this 

way, our evaluation scheme, which contains only single domain sequences, is 

different than most real-world database search scenarios. This difference may 

favor methods and parameters that generate more global alignments. This 

shortcoming could be addressed by embedding each of our test domain 

sequences within a sequence context that is similar or identical to that which it is 

found in real protein sequences. This fix would slightly complicate the 

evaluation protocol because not all alignments would be relevant, i.e., an 

alignment between the query sequence and the contextual sequence would need 
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to be ignored. Regardless, this improvement should be fairly simple to 

implement. 

Another improvement would be to consider a more natural 

normalization scheme than the two currently used. Normalizing by the size of 

the superfamily that a sequence belongs to reduces or eliminates an unwanted 

effect wherein large superfamilies dominate the overall results. However, in the 

databases that biologists use to identify homologs (as in nature), certain 

superfamilies are more prevalent than others. Therefore, favoring a database 

search method that is superior in identifying homologs within superfamilies 

that are naturally more numerous may be warranted. This rationale suggests a 

strategy to normalize database search results by the prevalence of each 

superfamily. The prevalence could be measure within complete genomes as a 

proxy for measuring their prevalence in nature or, more pragmatically, in the 

large, non-redundant databases used for homolog detection. 

Alignment quality is an evaluation criterion that could also be improved. 

Our current scheme only evaluates methods for their ability to detect remote 

homologs. A related use for database search methods is to generate an accurate 

alignment that correctly matches homologous residues within each sequence. A 

correct alignment is critically important in homology modeling, profile 

generation, and phylogenetics. Structurally derived test databases for evaluating 

alignment quality have been generated, but no consensus method or set is 

available. This is likely because the problem is more difficult than that of remote 
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homolog test database generation. To determine if two structures are 

homologous, an expert assesses many features of the two structures, both global 

and local, and renders one verdict: either they are homologous or they or not. 

Generating a correct alignment based on structural information can be 

indeterminate. Insertions and deletions within each sequence can make exact 

residue-to-residue assignments ambiguous. In other words, although the 

sequences as a whole may both derive from a common ancestor, often not all of 

the parts of each sequence have.  

Finally, there is a need to develop an evaluation methodology for profile 

database search methods. These programs are fundamentally different from 

pairwise search methods in that they search sequence databases with a 

statistical model of a sequence family rather with an individual instance, i.e. a 

sequence, of that family. Because model generation is part of the process of 

using a profile method, there are two steps to evaluate: model generation and 

model searching. Put another way, a profile method could fail because it 

incorrectly models a sequence family, perhaps by trying to model a “family” of 

sequences that are not evolutionarily related. Or, it could fail because it does not 

compare the model to each database in a sensitive way. An ideal profile 

evaluation scheme should disentangle these issues. 
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Appendix A 
 

Human SWISS-PROT isoforms derived from PTC+ mRNAs 
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Accession. SWISS-PROT ID 

Isoform 
name Gene name(s) cDNA/mRNA 

P78314 3BP2_HUMAN SHORT SH3BP2; 3BP2; RES4-23 AB000463 
P05023 A1A1_HUMAN SHORT ATP1A1 U16798 
Q9NSE7 ABCD_HUMAN 2 ABCC13 AF418600 
  3  NM_138726 
O75078 AD11_HUMAN SHORT ADAM11; MDC NM_021612 
Q9P0K1 AD22_HUMAN 2 ADAM22; MDC2 NM_021722 
Q9Y6N9 AI75_HUMAN 3 USH1C; AIE75 AF039699 
Q92667 AKP1_HUMAN 2 AKAP1; AKAP149 NM_139275 
P20594 ANPB_HUMAN SHORT NPR2; ANPRB NM_000907 
P18847 ATF3_HUMAN 2 ATF3 NM_004024 
Q9H6X2 ATR1_HUMAN MAJOR ANTXR1; ATR; TEM8 NM_032208 
Q9NY97 B3G7_HUMAN 2 B3GNT1; B3GALT7 AF288209 
Q9HB09 BC12_HUMAN 2 BCL2L12; BPR NM_052842 
P13497 BMP1_HUMAN BMP1 6 BMP1 NM_006130 
  BMP1 5  NM_006131 
  BMP1 4  NM_006132 
Q9HB55 C343_HUMAN 4 CYP3A43 AF280111 
P01258 CAL0_HUMAN 2 CALCA; CALC1 M64486 
Q9HC96 CANA_HUMAN B CAPN10; KIAA1845 NM_023084 
  D  NM_023086 
  E  NM_023087 
  F  NM_023088 
P28907 CD38_HUMAN 2 CD38 D84277 
Q08722 CD47_HUMAN OA3 305 CD47 BC037306 
O15519 CFLA_HUMAN 9 CFLAR; CLARP; MRIT; CASH AF009617 
Q9H2X0 CHRD_HUMAN 3 CHRD AF209930 
  4  AF283325 
O43526 CIQ2_HUMAN 3 KCNQ2 NM_004518 
Q9NYG8 CIW4_HUMAN 2 KCNK4; TRAAK NM_016611 
P49759 CLK1_HUMAN SHORT CLK1; CLK L29222 
P49760 CLK2_HUMAN SHORT CLK2 NM_001291 
P49761 CLK3_HUMAN 2 CLK3 NM_001292 
Q13286 CLN3_HUMAN 4 CLN3; BTS AF077963 

Q99788 CML1_HUMAN MAJOR CMKLR1; DEZ; CHEMR23 
U79526 
 

P27815 CN4A_HUMAN 2 PDE4A AF069491 
Q9H9E3 COG4_HUMAN 2 COG4 AB088369 
Q9Y215 COLQ_HUMAN VII COLQ NM_080543 
Q96SM3 CPXM_HUMAN 2 CPXM BC032692 
Q9BZJ0 CRN1_HUMAN 4 CRNKL1; CRN AF318304 
  5  AF318305 
Q9BUV8 CT24_HUMAN 4 C20ORF24 BC004446 
P57077 CU07_HUMAN B C21ORF7 AF269162 
  C  AF269163 
Q9NVD3 CU18_HUMAN B C21ORF18 AF391112 
Q92879 
 

CUG1_HUMAN 
 

MAJOR 
 

CUGBP1; BRUNOL2; CUGBP; 
NAB50 AF248648 

O76075 DFFB_HUMAN BETA DFFB; DFF2; DFF40; CAD 
AB028911 
 

  GAMMA  AB028912 
  DELTA  AB028913 
P25686 DJB2_HUMAN 3 DNAJB2; HSJ1; HSPF3 NM_006736 
  MAJOR  S37374 
Q09013 DMK_HUMAN 11 DMPK; MDPK L19268 
Q9NYP3 DONS_HUMAN 2 DONSON; C21ORF60 NM_145794 
  3  NM_145795 
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Accession. SWISS-PROT ID 

Isoform 
name Gene name(s) cDNA/mRNA 

Q9NY33 DPP3_HUMAN 2 DPP3 NM_130443 
O60941 DTNB_HUMAN 3 DTNB NM_033147 
P29320 EPA3_HUMAN MAJOR EPHA3; ETK1; ETK; HEK NM_005233 
O75616 ERAL_HUMAN HERA B ERAL1; HERA AF082658 
Q92731 ESR2_HUMAN 3 ESR2; NR3A2; ESTRB BC024181 
O00507 FAFY_HUMAN SHORT USP9Y; USP10; DFFRY Y13619 
P24071 FCAR_HUMAN B DELTA S2 FCAR; CD89 NM_133280 
P41439 FOL3_HUMAN SHORT FOLR3 Z32633 
O95954 FTCD_HUMAN E FTCD AF289024 
P59103 G72_HUMAN MAJOR G72 AY138546 
  2  NM_172370 
Q9UBA6 G8_HUMAN MAJOR C6ORF48; G8 NM_016947 
Q9UBS5 GBR1_HUMAN 1E GABBR1 NM_021905 
Q9BSJ2 GCP2_HUMAN 2 TUBGCP2; GCP2 BC005011 
P56159 GDNR_HUMAN 2 GFRA1; GDNFRA; TRNR1; RETL1 NM_145793 
O94925 GLSK_HUMAN GAC GLS; KIAA0838 AF158555 
Q969S8 HD10_HUMAN 4 HDAC10 AL022328 
Q30201 HFE_HUMAN MAJOR HFE; HLAH NM_000410 
Q9NRM6 I17S_HUMAN 2 IL17RB; IL17BR; EVI27 NM_172234 
Q14790 ICE8_HUMAN 7 CASP8; MCH5 NM_033357 
Q92851 ICEA_HUMAN B CASP10; MCH4 NM_001230 
  C  NM_032976 
Q92985 IRF7_HUMAN C IRF7 NM_004030 
Q01638 IRL1_HUMAN C IL1RL1; ST2; T1; DER4 NM_173459 
O14713 ITP1_HUMAN MAJOR ITGB1BP1; ICAP1 NM_004763 
  2  NM_022334 
Q9HCP0 KC11_HUMAN 1S CSNK1G1 NM_022048 
P20151 KLK2_HUMAN 3 KLK2 AF188745 
Q9H2R5 KLKF_HUMAN 2 KLK15 NM_023006 
Q9UJU2 LEF1_HUMAN B LEF1 AF294627 
P19256 LFA3_HUMAN SHORT CD58; LFA3 X06296 
P53667 LIK1_HUMAN 3 LIMK1; LIMK NM_016735 
Q99698 LYST_HUMAN MAJOR CHS1; LYST; CHS NM_000081 
P49641 M2A2_HUMAN SHORT MAN2A2; MANA2X NM_006122 
O95405 MADI_HUMAN 2 MADHIP; SARA NM_007324 
P11137 MAP2_HUMAN MAJOR MAP2 NM_002374 
  MAP2C  NM_031845 
P27816 MAP4_HUMAN 2 MAP4 BC015149 
P25912 MAX_HUMAN 3 MAX NM_145113 
Q15759 MK11_HUMAN BETA 2 MAPK11; PRKM11; SAPK2 NM_002751 
O15438 MRP3_HUMAN 3A ABCC3; CMOAT2; MRP3; MLP2 NM_020037 
  3B  NM_020038 
P21757 MSRE_HUMAN II MSR1 NM_002445 
Q9H1B4 NXF5_HUMAN MAJOR NXF5; TAPL1 NM_032946 
  B  NM_033152 
  C  NM_033153 
  D  NM_033154 
  E  NM_033155 
Q96QS1 PHMX_HUMAN 5 PHEMX; TSSC6 NM_139023 
  4  NM_139024 
O14829 PPE1_HUMAN 2 PPEF1; PPEF; PPP7C NM_152225 
Q9UMR5 PPT2_HUMAN 2 PPT2 NM_138934 
Q9NQW5 PRD7_HUMAN MAJOR PRDM7; PFM4 NM_052996 
O14818 PSA7_HUMAN 4 PSMA7 NM_152255 
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Acc. SWISS-PROT ID 

Isoform 
name Gene name(s) cDNA/mRNA 

P55036 PSD4_HUMAN RPN10E PSMD4; MCB1 NM_153822 
P49768 PSN1_HUMAN I 374 PSEN1; PSNL1; AD3; PS1 NM_007319 
P23468 PTPD_HUMAN MAJOR PTPRD NM_002839 
O75771 R51D_HUMAN 2 RAD51L3; RAD51D NM_133627 
Q93062 RBMS_HUMAN MAJOR RBPMS NM_006867 
P78563 RED1_HUMAN MAJOR ADARB1; RED1; DRADA2 NM_015833 
O15126 SCA1_HUMAN 2 SCAMP1; SCAMP NM_052822 
Q13243 SFR5_HUMAN SRP40 2 SFRS5; SRP40; HRS NM_006925 
O60902 SHX2_HUMAN MAJOR SHOX2; SHOT; OG12X NM_006884 
Q13425 SNB2_HUMAN 2 SNTB2; SNT2B2 NM_130845 
Q9Y5W8 SNXD_HUMAN 2 SNX13; KIAA0713 NM_015132 
P18583 
 

SON_HUMAN 
 

E 
 

SON; NREBP; DBP5; C21ORF50; 
KIAA1019 

NM_058183 
 

  C  NM_138926 
Q15528 SUR5_HUMAN SURF5A SURF5; SURF-5 NM_006752 

O14763 T10B_HUMAN MAJOR 
TNFRSF10B; DR5; TRAILR2; 
TRICK2; KILLER; ZTNFR9 NM_003842 

  SHORT  NM_147187 
Q9BZY9 TM31_HUMAN BETA TRIM31 NM_052816 
P25445 TNR6_HUMAN 4 TNFRSF6; APT1; FAS; FAS1 NM_152873 
  5  NM_152875 
  3  NM_152876 
  2  NM_152877 
P00750 TPA_HUMAN SHORT PLAT NM_000931 
Q93038 
 

TR12_HUMAN 
 

12 
 

TNFRSF25; TNFRSF12; WSL1; WSL; 
APO3; DR3; DDR3 

NM_148968 
 

  4  NM_148969 
  3  NM_148971 
  5  NM_148972 
  6  NM_148973 
  7  NM_148974 
Q9BYM8 U7I3_HUMAN 4 UBCE7IP3; C20ORF18; XAP4 NM_031227 
  2  NM_031228 
P58418 USH3_HUMAN B USH3A NM_174880 
Q9NP71 WS14_HUMAN 5 WBSCR14; MIO NM_032994 
Q02040 
 

XE7_HUMAN 
 

SHORT 
 

(XE7X; XE7; DXYS155E); 
(XE7Y; XE7; DXYS155E) 

NM_005088 
 

Q9Y493 ZAN_HUMAN 1 ZAN NM_173055 
  2  NM_173056 
  4  NM_173057 
  5  NM_173058 
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Appendix B 
 

Correlation between SWISS-PROT structural domains 
 

and alternatively spliced regions 
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My initial investigation into alternative splicing was motivated by the 

hypothesis that alternative splicing may correlate with in some way with the 

domain organization encoded in genes that are alternatively spliced. The 

rationale was that if evolution has bothered to set up a system of alternative 

splicing, then it likely affected regions that had some function and these would 

more likely than not be the structural (and functional) domains. If this 

hypothesis could be confirmed, then perhaps alternative splicing could be used 

to discover the domain organization in newly sequenced genes. 

To investigate this possibility I wrote several programs that may be of 

use for others. In this appendix, I describe these programs. 

varprot.pl 

This perl program generates takes as input the complete SWISS-PROT database, in 

SWISS-PROT format and outputs a FASTA format database that contains complete 

entries for all annotated alternative isoforms. It uses the BIOPERL SWISS-PROT 

parser to extract the ALTERNATIVE PRODUCTS section from each SWISS-PROT 

entry, described in section 3.11.2 of the SWISS-PROT user manual 

(http://us.expasy.org/sprot/userman.html). Each entry in the output database 

contains information in its header that describes which regions are alternatively 

spliced. The format of the header line is: 

>SWISS-PROTID-# NAME [M|V START END] [M|V START END]… 

Where SWISS-PROTID-# is the Isoform ID and name is the name given in the 

ALTERNATIVE PRODUCTS section. These are followed by a variable number 
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of bracketed descriptions of the variably spliced regions. Each region has three 

components. The first is either an M or a V. M indicates that this region is 

missing (deleted) in some other isoform(s). V indicates that this region is 

variable (different sequence) in some other isoforms. The last two components 

are the start and end coordinates on the sequence given in this entry. 

 

res2altsp.pl 

This perl program generates and outputs a data structure that contains 

information about structural domain hits against sequences in a specified 

database. The database can be either a FASTA database containing the variable 

region descriptions given by VARPROT.PL or it can be an entire SWISS-PROT 

database in SWISS-PROT format. The other input is a database containing BLAST or 

HMMER hits against the sequences in the named database. 

 

ASDOMTypes.pl 

Takes as input the data structure ouput by RES2ALTSP.PL. Classifies each 

SWISS-PROT isoform by the spatial relationships between its alternatively spliced 

(AS) regions and its structural domains (SDs). There are eight categories: 

(0) No identifiable structural domain (SD) regions 

(1) All SDs do not overlap alternatively spliced (AS) regions 

(2) Single AS region contains SD 

(3) Single SD contains single AS region 
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(4) There is overlap between an AS region and a SD 

(5) SD contains multiple AS regions 

(6) There is overlap between SD and multiple AS regions 

(7) SD contains AS region(s) and is overlapped by an AS region 

Along with the observed number of each category, the number in each category 

that would be expected if SDs were placed within the database sequences 

randomly with respect to AS regions is output. 

 

ASDOMTypesByDom.pl 

Takes the same inputs as ASDOMTYPES.PL, but classifies each domain rather 

than each isoform. Also generates output for each domain identifier seen.
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