
APPLICATIONS OF SECURE MULTIPARTY COMPUTATION IN

SECRET SHARING FOR TACTICAL ENVIRONMENTS

MAHRUD SAYRAFI AND SIMON WOO

Abstract. Secret sharing schemes are methods using which a secret can be distributed

between a set of N players in a way that at least K players (K ≤ N) have to combine

their pieces of the secret in order to reconstruct the original secret, but no information
about the secret can be gained otherwise.

Secure multiparty computation algorithms are methods that intend to answer ques-
tion of how can we compute a function while keeping the inputs secret from all parties.

It is well known that many secret sharing methods can be used to construct secure and

efficient multiparty computation algorithms and recent papers and academic endeavours
in both fields focus on introducing more complex (albeit computationally faster) methods

to achieve that goal and to improve security of MPC algorithms against mallicious or fake

parties. However, MPC algorithms can also be used to improve secret sharing methods.
This paper introduces a simple method of applying a rudimentary MPC method to

secure Shamir’s secret sharing method against a range of attacks in an attempt to attract

interest in applying modern MPC methods to create better secret sharing methods.

Contents

1. Introduction 2
1.1. The Application Scenario 2
2. Preliminary Cryptographic Protocols 4
2.1. Vandermonde Matrix 4
2.2. Shamir’s Secret Sharing Scheme 4
2.3. Secure Multiparty Computation 6
3. Secure Multiparty Reconstruction 6
4. Contributions of this Paper and Conclusion 7
5. Discussion and Future Works 7
6. Acknowledgement 8
Appendix A. Autonomous Information Unit 8
References 8

Date: September 19, 2013.

Key words and phrases. Secret Sharing, Secure Multiparty Computation.

1



2 MAHRUD SAYRAFI AND SIMON WOO

1. Introduction

In this section we provide few real world analogies that can help readers of different
disciplines understand the goals and applications of this paper.

1.1. The Application Scenario. Suppose you are a bank owner with N managers who
need to access the vault, however, since one can never be too cautious, you want to grant
them access to the vault if and only if at least K ≤ N of them are present. The first solution
that comes to mind is to make a few copies of the key and break them into small pieces and
distrtibute them between your managers; this method is very complicated due to the fact
that the required number of keys increases exponentially to a point where it is impractical
to use this method.

To a cryptologist’s eye, however, this puzzle looks as simple as the following high school
pre-calculus problem:

Problem 1.1. Interpolation Problem
Imagine that there is an unknown function f(x) for which someone supplies you with its
values at K distinct points x0 < x1 < ... < xk – i.e., (x0, y0), (x1, y1), ..., (xk, yk) are given.
Construct a degree K − 1 function f(x) that passes through these points.

It should be easy to imagine that we can consider the coefficients of the function as our
key. Now we can generate as many points on the polynomial as needed and distribute
them between the managers and rest assured that any K distinct points are sufficient to
reconstruct the key while K − 1 points will not reveal any information about the secret.

In cryptology, these systems are referred to as Secret Sharing System because the goal
is to share a secret, namely the key, between a group of participants. In fact the method
described above is the backbone of a system described in section 2.2.

The problem that this paper intends to answer is, how do you reassemble these pieces of
the secret securely? Or more precisely, who reassembles them? Can we trust a single person
to do that? What if a thief disguised as a bank manager was chosen to reassemble the pieces
and once he has access to the pieces, he took copies of them? Even outside the analogy,
at the end of the day one CPU is processing the reconstruction algorithms, so whoever
has access to that CPU can plant a backdoor to steal the pieces. Once we simplified the
problem, we realized that all that is needed to do is to somehow keep the individual shares
secret as well; but how is it possible to compute an algorithm over secret inputs?

Suppose you are attending your high school reunion and while having dinner with two old
friends you wonder what is the average salary of you three, but nobody is willing to reveal
his own salary. Here we have the same problem: how do we compute a simple function over
a set of inputs that need to be kept secret.

Just as before, a cryptologist sees this enigma as a simple problem that only requires
knowledge of middle school algebra – once again, mathematics to the rescue! Here we will
explain a basic protocol for this problem and in section 2.3 a general solution is provided.



APPLICATIONS OF SECURE MULTIPARTY COMPUTATION IN SECRET SHARING 3

Average Salary Protocol
Suppose three participants X, Y, and Z with three secret numbers x, y, and z want

to calculate the average of their secrets. The simplest method of doing so is as follows:

(1) Z and Y choose on a random number r and keep it secret from X. This number
doesn’t have to be calculated by both of them in a multiparty setting; i.e., the
older participant can choose a random number and tell the younger one.

(2) Z privately sends z + r to X.
(3) Y privately sends y − r to X.
(4) Now X knows the following numbers: x, z + r, y − r. It is evident that X

can simply add those numbers and since +r and −r cancel each other, X will
achieve S = x + y + z.

(5) X divides S by three to find the average and anounces the result.

This system is secure against passive attackers, meaning that X, Y, and Z are trusted
and have established secure channels between each other; i.e., X cannot eavesdrop on
Y and Z to steal r.

X

Y

y−r

AA

Z

z+r

]]

//Roo

Figure 1. Multiparty Addition Between Three Members

Back to the original problem, now empowered by the knowledge of Secret Sharing Systems
and Secure Multiparty Computation, how can we achieve our goal, namely to reconstruct
the secret without risking the pieces falling into wrong hands?

In section 2 we will describe the general format of the tools that we need in details and in
section 3 we will explain the Secure Multiparty Reconstruction algorithm that is the main
contribution of this paper.

Further, we will show the outline of possible lines for future work.



4 MAHRUD SAYRAFI AND SIMON WOO

2. Preliminary Cryptographic Protocols

In this section we present the preliminary cryptographic protocols used in this paper.

2.1. Vandermonde Matrix. A Vandermonde matrix, named after Alexandre-Théophile
Vandermonde, is a matrix in which each row is a geometric progression with distinct bases
a0, a1, · · · , an−1. For instance the following is a m× n Vandermonde matrix:

V =



a00 a10 a20 · · · an−1
0

a01 a11 a21 · · · an−1
1

a02 a12 a22 · · · an−1
2

...
...

...
. . .

...
a0m−2 a1m−2 a2m−2 · · · an−1

m−2

a0m−1 a1m−1 a2m−1 · · · an−1
m−1


An interesting property of this matrix is that the determinant of a square Vandermonde
matrix (i.e., m = n) can be written as:

|V | =
∏

0≤i<j<n

(ai − aj)

Hence, as long as all bases are distinct the determinant is nonzero, thus the matrix is
invertible.

2.2. Shamir’s Secret Sharing Scheme. In [1], Adi Shamir proposed a secret sharing
scheme based on polynomial interpolation (see figure 2.2) that soon became one of the most
well known schemes in the field.

Figure 2. Any k = 5 of the n = 9 points here are sufficient to interpolate
the degree-4 polynomial f(x) = ax4 + bx3 + cx2 + dx + e.



APPLICATIONS OF SECURE MULTIPARTY COMPUTATION IN SECRET SHARING 5

In this section we demonstrate the matrix representation of this method:
We define matrix Vn×k as a Vandermonde matrix with distinct bases x0, x1, ..., xn−1:

V =



x0
0 x1

0 x2
0 · · · xk−1

0

x0
1 x1

1 x2
1 · · · xk−1

1

x0
2 x1

2 x2
2 · · · xk−1

2
...

...
...

. . .
...

x0
n−2 x1

n−2 x2
n−2 · · · xk−1

n−2

x0
n−1 x1

n−1 x2
n−1 · · · xk−1

n−1


Then, in order to divide a secret vector S =

(
s0 s1 s2 · · · sk−1

)
into n pieces such

that any k can reconstruct s, we simply find the vector D = V S:

D = V S =



x0
0 x1

0 x2
0 · · · xk−1

0

x0
1 x1

1 x2
1 · · · xk−1

1

x0
2 x1

2 x2
2 · · · xk−1

2
...

...
...

. . .
...

x0
n−2 x1

n−2 x2
n−2 · · · xk−1

n−2

x0
n−1 x1

n−1 x2
n−1 · · · xk−1

n−1




s0
s1
s2
...

sk−1

 =



d0
d1
d2
...

dn−2

dn−1


Now we can distribute each pair (xi, di) between the players (a.k.a. shareholders). To
reconstruct the secret, once k players with pairs of (ai, bi) have gathered, we can construct
the square Vandermonde matrix A as:

A =



a00 a10 a20 · · · ak−1
0

a01 a11 a21 · · · ak−1
1

a02 a12 a22 · · · ak−1
2

...
...

...
. . .

...

a0k−2 a1k−2 a2k−2 · · · ak−1
k−2

a0k−1 a1k−1 a2k−1 · · · ak−1
k−1


And the vector B as: (

b0 b1 b2 · · · bk−1

)
Then, knowing that in a square Vandermonde matrix with distinct bases the determinant
is nonzero, we calculate the inverse A−1 such that:

AA−1 = I

So for any vector v we have:
AvA−1 = v

Thus, we can reconstruct secret vector S:

BA−1 = ASA−1 = S



6 MAHRUD SAYRAFI AND SIMON WOO

2.3. Secure Multiparty Computation. In [2], Ronald Cramer, Ivan Damg̊ard, and Jes-
per Buus Nielsen described a multiparty Secure Addition Protocol that is a generalization
of the Average Salary Protocol described in the introduction:

Secure Addition Protocol
Participants are P1, P2, P3, input for Pi is xi ∈ Zp, where p is a fixed prime agreed

upon in advance.

(1) Each Pi computes and distributes shares of his secret xi as described in the text:
he chooses ri,1, ri,2 uniformly at random in Zp, and sets ri,3 = xi − ri,1 − ri,2
mod p.

(2) Each Pi sends privately ri,2, ri,3 to P1, ri,1, ri,3 to P2, and ri,1, ri,2 to P3 (note
that this involves Pi sending “to himself”). So P1 for instance, now holds r1,2,
r1,3, r2,2, r2,3 and r3,2, r3,3.

(3) Each Pj adds corresponding shares of the three secrets – more precisely, he
computes, for l 6= j, sl = r1,l +r2,l +r3,l mod p, and announces sl to all parties
(hence two values are computed and announced).

(4) All parties compute the result v = s1 + s2 + s3 mod p.

3. Secure Multiparty Reconstruction

Here we introduce a method for reconstruction of the shares in a secure multiparty fashion.
This method is based on a preprocessing step in which each party generates a session share.
This share is different in each session consisting of different parties, thus the scheme is safe
against reply attacks; i.e., the information gathered by a malicious party during one session
is useless in a session with different members.

Let P0, P1, P2, ..., Pk−1 to be a set of K parties each with a piece if the form (xi, di)
gathered to reconstruct their shares and let the vector D =

(
d0 d1 d2 · · · dk−1

)
be

the set of their secrets. First we construct the Vandermonde matrix V with entries equivalent
to the x values of the parties; that is, let the first row be a geometric series with base x0

and so on. Now we publicly calculate V −1, the inverse Vandermonde matrix equivalent to
those parties. As observed before, it is clear that V −1D = s. Let us define the inverse
Vandermonde matrix as:

V −1 =
(
v0 v1 v2 · · · vk−1

)
Note that each item vi is a column of the matrix. Thus, we have:

V −1D =
(
v0 v1 v2 · · · vk−1

) (
d0 d1 d2 · · · dk−1

)
=

= d0v0 + d1v1 + d2v2 + ... + dk−1vk−1 = S

What we realize is that party i only requires to know di along with vi, and what follows is
simply a sum of columns which can be performed using the secure addition protocol.



APPLICATIONS OF SECURE MULTIPARTY COMPUTATION IN SECRET SHARING 7

Secure Multiparty Reconstruction Protocol
N parties have shared a secret among themselved using Shamir’s secret sharing

method. Suppose k members with pieces (xi, di) have gathered to reconstruct the
secret, then they must do the following steps:

(1) The parties publicly generate the inverse Vandermonde matrix V −1 equivalent
to their x values and announce it. Let V −1 =

(
v0 v1 v2 · · · vk−1

)
(2) Party i calculates his session share:

di ∗ vi =
(
divi,0 divi,1 divi,2 · · · divi,k−1

)
=

=
(
s0,i s1,i s2,i · · · sk−1,i

)
(3) Now, the group performs the Secure Addition protocol K times, each time

finding: sj =
∑k−1

i=0 sj,i
(4) Finally, we compose the secret vector out of the resulting sums: S =(

s0 s1 s2 · · · sk−1

)
4. Contributions of this Paper and Conclusion

In this paper we introduced a method of reconstructing secret shares in Shamir’s system
that protects the shares from being revealed if any of the participants have corrupted or
fake shares. Additionally, this system allows us to use the same secret shares for future
purposes, and secures the system against protocol hijacking attacks.
Further, this method will be used in the AIU technology to add another layer of security to
the current infrastructure.

5. Discussion and Future Works

The next step in this path is to prevent the individual shares from being revealed even
if all participants are authentic. So far some progress has been made toward this goal by
looking for methods of calculating individual columns of the inverse Vandermonde matrix
in a multiparty setting.

In [3] Althaus and Leake shown a method of such computation [3] in a finite-field:

Theorem 5.1. Let GF (q) denote a Galois Field (Finite Field) with q = pm. If n is relatively
prime to q and the roots a0, a1, · · · , an of xn+1 ≡ x are in GF (q) (such as when n = q− 1),
the inverse of the Vandermonde matrix can be calculated as:

(1) V −1 =


1 a0 a20 · · · an−1

0

1 a1 a21 · · · an−1
1

1 a2 a22 · · · an−1
2

...
...

...
. . .

...
1 an−1 a2n−1 · · · an−1

n−1



−1

= n−1


1 1 · · · 1

a−1
0 a−1

1 · · · a−1
n−1

a−2
0 a−2

1 · · · a−2
n−1

...
...

. . .
...

a
−(n−1)
0 a

−(n−1)
1 · · · a

−(n−1)
n−1





8 MAHRUD SAYRAFI AND SIMON WOO

Based on the theorem above and the proof provided in section 3, each participant can
multiply his own share with the equivalent column in the inverse Vandermonde matrix, and
then all participants perform the Secure Addition protocol to find the final secret. This way,
even the x value in each individual’s share can be kept secret.

Is it possible to create a cryptosystem in which the encryption and decryption must be
performed in a multiparty setting? Such a system could be used to create a network protocol
in which the data is useless, unless a sufficient number of trusted users are present. How
about a multi party pseudo random number generator?

6. Acknowledgement

This work was made possible by a Summer Undergraduate Research Fellowship from
California Institute of Technology and Jet Propulsion Laboratory in Pasadena, California.
The author thanks mentor and co-mentor Simon Woo and Edward Chow for their guidances
in the duration of this project.

Appendix A. Autonomous Information Unit

The AIU technology [4] was designed by researchers at the Jet Propulsion Laboratory to
provide an infrastructure to protect data between multiple units, where units can be servers,
computers, or handheld devices. An AIU provides a mechanism to establish the required
trust between the AIUs before they engage in reconstructing the information that has been
distributed between them.

References

[1] Shamir, Adi; “How to share a secret.” Commun. ACM, 22(11):612-613, November 1979.

[2] Cramer, Ronald, Damg̊ard, Ivan, and Nielsen, Jesper Buus; “Secure Multiparty Computation and

Secret Sharing – An Information Theoretic Appoach.” Book Draft.
[3] Althaus, H. and Leake, R.; “Inverse of a finite-field Vandermonde matrix (Corresp.)” Information

Theory, IEEE Transactions on, 15(1):173-173 1969.
[4] Chow, E. T., Woo, S., James, M., and Paloulian, G.; “Autonomous Information Unit for Fine-Grain

Data Access Control and Information Protection in a Net-Centric System.” California Institute of

Technology and NASA’s Jet Propulsion Laboratory. April 2012.


