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Abstract. Quantum entanglement, one of the most counter-intuitive phenomena in quantum
theory, has long been studied in information theoretic contexts. It is known that use of entanglement
in multiparty game strategies can lead to arbitrarily large advantage over classical players. These
violations of classical bounds, known as Bell’s inequalities, are due to the nonlocal nature of the
correlations.

Here we introduce a protocol for key distribution among three parties who share nothing other
than entangled quantum states. Further, we present partial results in enabling any two players to
use partial entanglement to produce a key independent of the third player in order to make the
protocol resilient against a corrupted player.

This research contributes to the study of non-locality in the reduced bipartite state of an entan-
gled state that maximally violates a tripartite inequality.

I. Introduction

I.1. Goals. In cryptography, key distribution refers to the process in which two or more parties
share or exchange a secret key prior to using any encryption algorithm. In 1991 Artur Ekert
proposed a quantum key distribution protocol based on quantum entanglement [1]. While classical
key distribution protocols rely on a trusted party to share symmetric keys or the computational
difficulty of certain mathematical functions to protect asymmetric keys, in 2005 Berrett et al. proved
that Ekert’s protocol is secure against an eavesdropper with post-quantum physics and only limited
by the impossibility of signaling faster than the speed of light [2]. Even more surprising, in 2007
Acin et al. presented a device-independent security proof, meaning that security holds regardless of
the way QKD devices work, provided that quantum physics is correct and the parties do not allow
any unwanted signals to escape from their laboratories [3].

The primary objective of this research is to extend the previous results by composing a protocol
that enables three parties who only share a number of entangled qubits to produce a secret key
known only to them. In the next section we will introduce quantum games as a tool to prove that
even if the source of these qubits is untrusted, we can use a classical test to prove that the protocol
will function correctly.

An additional question that arises in a three party scenario is whether all parties trust each other.
In Sec. III.3 we aim to ensure that the protocol is secure against dishonest parties by providing
partial results showing that bipartite correlations can be used to finish the protocol without the
corrupted party.

I.2. Quantum Games and Non-locality. Here we will motivate the concept of quantum games
by introducing the following game:
Suppose Alice, Bob, and Carol are three quantum information researchers each imprisoned in a
different isolated lab and they are only allowed to communicate with a Referee. Everyday they
receive a message from the Referee containing a single letter, either X or Y, with the condition that
only an even number of them will receive Y; i.e., either all receive X (XXX), or one of them receives
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X and the other two receive Y (XYY, YXY, YYX). By the end of the day the researchers are
required to respond to the message with either +1 or -1 and the Referee will extend their research
funding if and only if the product of their responses is +1 in the case of XXX or -1 otherwise. As
usual in game scenarios, the participants can devise a strategy before the beginning of the game
but no communication is permitted once the game begins.

At the first glance it is easy to come up with a strategy for winning in 3/4 of the games, however,
it can be proven that no classic strategy can guarantee winning. However, if we modify to game
to give slightly more power to the players by allowing them to share entangled particles while still
keeping them isolated, we can find a strategy that guarantees winning (see Appendix A). This
strategy uses an entangled state known as the GHZ-state for Greenberger, Horne, and Zeilinger,
who studied it first in 1989 [14].

This seemingly paradoxical result is due to the non-local nature of the correlations. In the
quantum information literature these games are referred to as Bell’s inequalities and the quantum
strategies are known as violations of those inequalities

I.3. What is considered secure? The first step in designing a protocol is to identify the adver-
sarial scenarios that we want to consider and make an explicit security definition.

Here we list the assumptions that we make regarding different parts of our protocol. We generally
assume that any untrusted component may have been altered or even manufactured by
Eve, but once the protocol starts she can neither modify the components nor gain
any information from them. In quantum cryptography, Eve sometimes represents the effects of
environment on the system (such as inexact qubits or measurements).

• Untrusted States: since it is impossible to find out what is the exact state of a qubit, we
have to consider a situation where the source of our entangled qubits is untrusted. The fact
that creating entangled qubits in a pure state is experimentally difficult makes considering
this constraint useful.
• Untrusted Measurements: we cannot be certain about the internal measurement made

by our devices. However, we know that the devices are sealed and Eve can neither modify
the devices nor gain any information from them after the protocol starts.
• Untrusted Participants: in multiparty protocols often we want to ensure that the proto-

col will finish if a portion of participants are dishonest and the untrusted parties learn
nothing more than what they would learn normally plus what they can compute
locally.

Here we consider the situation where only one of participants may lie in public announce-
ments (e.g., when announcing the measurement that they performed or the outcome of it),
but they do not reveal any information to Eve.

II. Results

Although a device-independent tripartite protocol satisfying all of our requirements could not be
found, in Appendix B we describe a key distribution protocol for three parties based on the GHZ
state.

In addition, we will show that it is possible to have a state and measurement settings that violate
a tripartite inequality such that the reduced density operator of that state also violates a bipartite
inequality. That is equivalent to having non-locality in a tripartite and bipartite game using the
same state. We propose the name concurrent non-locality to be used for this phenomenon.

The main state that we found to exhibit this quality is:

(1) |W−〉 =
1√
3

(|001〉+ |010〉 − |100〉)

Note that the only distinction from the W-state is the minus sign of one of the terms.
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This state can violate the inequality defined in Eq. 2. Using numerical methods the maximum
violation of that inequality using this state is 7.2593 which can be achieved using measurement
angles θ0 = 0.2677π and θ1 = π − θ0. It is worth mentioning that this violation and measurement
angles are the same for the normal W-state. Further, the reduced density operator of this state,
shown in Eq. 3, can violate the I3322 inequality [7]. We numerically found the maximum amount
of this violation to be 0.0554 while the highest known violation of the I3322 is 0.25 achieved using
the maximally entangled state |Ψ−〉 = 1√

2
(|01〉+ |10〉).

In the rest of the paper we will describe the methods and definitions used in this research.

III. Building Blocks

In [4], Dür et al. showed that there are two nonequivalent classes of three-qubit entangled states
that cannot be obtained from each other using invertible local transformations. In the introduction
we presented the motivation for this project using a game based on the GHZ-state which represents
one of the two equivalence classes. That state satisfied some, but not all, of our goals. In particular,
the GHZ-states are maximally entangled but as we will justify in Sec. III.3, they are fragile with
respect to losses. This can be inferred from the fact that the reduced density operator of any two
parties is separable. As a result GHZ-states could not be used for two-party key distribution if one
of the particles was lost due to environmental errors. Since all other entangled states of that class
share that property, we shifted our focus onto the W-state which represents the second class that
is less entangled but highly robust against losses.

In this work we will primarily discuss our results using the |W−〉-state along with the methods
that we used to look for best strategies. This state, which can be represented in the bra-ket notation
as:

|W−〉 =
1√
3

(|001〉+ |010〉 − |100〉)

is interesting for us because if we trace out the second or third qubit, the reduced state will still
exhibit non-locality. We will show the robustness of |W−〉-state and fragileness of GHZ-state in
Section (III.3).

III.1. Bell Inequality. In Sec. I.2 we claimed that a three party game can be used in building a
protocol. Quantum games are in fact informal thought processes based on Bell’s inequalities. The
first step in using this state is looking for a Bell-type inequality that can be maximally violated by
the |W−〉-state. For now we will focus on inequalities that represent strategies with two measure-
ments and binary outputs and are symmetric with respect to the parties; i.e., the measurement
settings for all parties are the same. One such inequality found by Brunner et al. in Ref. [8] can be
written as:

〈β〉 = 〈A0B0C0〉+ 〈A1B0C0〉+ 〈A0B1C0〉+ 〈A0B0C1〉
−(〈A1B1C1〉+ 〈A0B1C1〉+ 〈A1B0C1〉+ 〈A1B1C0〉)
+〈A0B1IC〉+ 〈A1B0IC〉+ 〈A0IBC1〉+ 〈A1IBC0〉+ 〈IAB0C1〉+ 〈IAB1C0〉 ≤ 6

(2)

where we used the shorthand:

〈A0B0C0〉 = 〈ψ|A0 ⊗B0 ⊗ C0|ψ〉,

in which 〈AiBjCk〉 ∈ [−1, 1] for i, j, k ∈ {0, 1} denotes outcome of parties A, B, and C measuring
their qubits in i-th, j-th, and k-th measurement setting respectively, and IA, IB, and IC denote
measuring using the identity operator. This inequality is created by adding some two-party cor-
relation terms to the Svetlichny’s inequality [6]. It can be proven that this inequality cannot be
violated by the GHZ-state [8].
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III.2. The Strategy. A strategy for a quantum game consists of the quantum state along with
the measurement settings that can violate the inequality. For this game Brunner et al. gave the
optimal measurements to be of the form:

Ai = cos θiZ + sin θiX

where X and Z are Pauli matrices. The optimal violation of the inequality above using the |W−〉-
state is 〈β〉 ≈ 7.2593 given by identical measurements with angles θ0 = 0.2677π and θ1 = π − θ0

for all parties. However, the maximal violation has been numerically found to be achieved by a
slightly modified state |ψ〉 = 0.9971|W 〉 − 0.07597|111〉 with measurement angles of θ0 = 0.2615π
and θ1 = π − θ0.

The next step in the 3-party setting is to find measurements such that all parties have the same
outcome with the highest probability possible. The purpose of this step is to provide a shared bit
from which we can distill a key. Unfortunately, however, we could not find such a measurement
on xz-plane of the Block sphere for the |W−〉 state. Once a satisfying measurement is found, the
next step is to apply key distillation processes such as information reconciliation to find a secure
string that can be used as a key. An example of such a protocol is described in Section (6.3) of
Ref. ([13]).

III.3. Bipartite Correlations. The next step before devising a protocol is finding bipartite cor-
relations of |W−〉-state that can be used to create a key if information about a single qubit is lost.
The effects of such an event can be represented by tracing out a qubit from the density operator.
The resulting reduced density operator is:

ρAB = TrC(|W−〉〈W−|) =
1

3


1 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

(3)

We can use the Positive Partial Transpose (PPT) criterion to check that this reduced density
operator is entangled. To do so, we have to show that the partial transpose of this operator has
negative eigenvalues. The partial transpose of ρAB is:

ρTBAB =
1

3


1 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0


which in fact has eigenvalues {1

2 +
√

5
2 , 1, 1,

1
2 −

√
5

2 ≈ −0.62}, thus ρAB is entangled.
As a side note, we can see that tracing out one qubit from a GHZ-state will result in the following

reduced density operator:

TrC(|GHZ〉〈GHZ|) =
1

2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


=

1

2
(|00〉〈00|+ |11〉〈11|)

=
1

2
(|0〉〈0| ⊗ |0〉〈0|+ |1〉〈1| ⊗ |1〉〈1|)

which is only classically correlated since the state is completely separable.
By this point we have shown that the reduced density operator of the |W−〉-state is entangled.

However, entanglement is only a necessary condition for non-locality. In order for this state to be
useful in our protocol we need an inequality that can be violated by it. Note that this state will not
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maximally violate any inequality. To prove that, first we have to look at the eigendecomposition
of ρAB:

ρAB =
∑

λi|vi〉〈vi|

=
2

3
|Ψ−〉〈Ψ−|+ 1

3
|00〉〈00|

(4)

where λi and vi are the eigenvalues and eigenvectors of ρAB, and |Ψ−〉 = 1√
2
(|01〉 − |10〉). This

is equivalent to having the Bell state |Ψ−〉 with probability 2
3 and the classical state |00〉 with

probability 1
3 . Assume we have an inequality 〈B〉 ≤ X that can be maximally violated by ρAB:

〈B〉 =
∑

Tr(ρABB)

=
∑

λiTr(|vi〉〈vi|B)

=
2

3
Tr(|Ψ−〉〈Ψ−|B) +

1

3
Tr(|00〉〈00|B) ≤ X + ε0

Then each component |vi〉〈vi| must violate the inequality equally on their own, because otherwise
there exists j such that for all i we have:

Tr(|vi〉〈vi|B) < Tr(|vj〉〈vj |B)

Thus:

〈B〉 =
∑

λiTr(|vi〉〈vi|B) ≤
∑

λiTr(|vj〉〈vj |B) ≤ X + ε0 + ε1

However, that would contradict our initial assumption, so all components violate the inequality
equally. But in the case of ρAB one of the components is |00〉〈00| which is not an entangled density
operator, thus our assumption is wrong and ρAB cannot produce a maximal violation.

III.4. Security from No-signaling Conditions. The fact that a reduced correlation can never
achieve maximal violation does not mean that it cannot lead to a key. Intuitively the reason behind
this statement is that even with smaller amounts of violation we can have a protocol that only has
a lower rate of producing key bits. In our security proof we will use the fact that the devices are
under no-signaling constraints to show that if Eve, an adversary, has a way of guessing the key
bit with a probability higher than a bound, then the no-signaling condition is broken, thus Eve’s
guessing ability is limited by that bound.

The No-Signaling Assumption states that the choice of observable for one system cannot modify
the marginal distribution for the rest of the systems; that is, the probability of each outcome for
any measurement on Bob’s qubit must be independent of Alice’s choice of measurement because
otherwise Alice would be able to convey messages to Bob faster than the speed of light. This
method has been described in details in [10] and [11].

Denote Pe as the probability that Eve can guess Alice’s outcome without violating the no-
signaling condition. For the inequality 2 we generated the following table using linear programming
techniques to show what is the upper bound on Pe if we can violate the inequality with probability
Pw:

Pw 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85
Pe 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80

For instance in the first column there is no violation of classical inequality Pw ≤ 0.75, so Eve
has at least one strategy for guessing Alice’s output deterministically (Pe = 1). As the non-locality
increases, Eve’s guessing ability reduces. However, even with the maximum violation, Eve can
have a non-trivial way of guessing they key bit with a relatively high probability (note that such
a method is not necessarily limited by quantum mechanics, but it is limited by the no-signaling
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assumption). In other words, the key string produced by the protocol until this step is only partially
secret.

The last step required in the protocol is privacy amplification. The purpose of this step, as
described in Section (5) of Ref. ([13]), is to distill a secret key from only partially secret data to
get a completely secure key.

IV. Methods

In this section we describe the optimization methods that we used to approximate the best
strategy (state and measurements) for a Bell inequality. We categorize the inequalities based on
three parameters (n,m,∆) where the number of parties is n, number of measurement settings for
each party is m, and number of possible outcomes for each measurement is ∆. As mentioned before,
for now we focus only on the cases where the measurements have two possible outcomes; i.e., ∆ = 2.

Using the fact that the Pauli matrices X, Y , and Z together with the 2 × 2 identity matrix I
form an orthogonal basis for the real Hilbert space of 2 × 2 complex Hermitian matrices, we can
parametrize our measurement operators in the form:

(5) Mj = cII + cXX + cY Y + cZZ

where Mj is the j-th measurement setting and cj are real coefficients with c2
i + c2

x + c2
y + c2

z = 1.
This decomposition is also known as the Hilbert-Schmidt decomposition. Additionally, in Ref. [8]
Brunner et al. claim that the optimal measurement settings for our inequality can always be taken
to be real and we can simplify the parametrization to:

(6) Mj = cos θjZ + sin θjX

where θj is an angle from 0 to π.

IV.1. Strategy for Tripartite Inequality (3,2,2). Given an inequality for three parties we need
to find the state |ψ〉 and measurement settings that maximally violate it. Our task is to maximize
〈ψ|β|ψ〉 where β is the Bell inequality in Eq. (2) if we substitute the measurement operators with
operators in the form of Eq. (6).

If we letM be a measurement operator, we know that it has an eigendecomposition of the form:

(7) M =
∑
i

λi|vi〉〈vi|

where λi are the eigenvalues and vi are the respective eigenvectors (i.e., Mvi = λivi). We have:

〈ψ|M|ψ〉 =
∑
i

λi〈ψ|vi〉〈vi|ψ〉

=
∑
i

λi|〈vi|ψ〉|2
(8)

Thus, our optimization problem is:

given M =
∑

λi|vi〉〈vi|

maximize |〈vi|ψ〉|2

subject to |〈ψ|ψ〉|2 = 1

(9)

Hence, since the dot product of two vectors is maximum when the angle between them is zero,
the optimal strategy would be to set our state equal to the eigenvector with the largest eigenvalue.
That is:

(10) |ψ〉 = |vargmax
i
{λi}〉
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Note that we need to check this for all possible measurement settings. As mentioned before, each
measurement can be described in the form of Eq. (6), so we need to run a loop for the angle of each
of the six measurements. As a result the computational complexity of this program would be in
the order of O(n6) where n is the number of angles we check for each measurement. However, we
can optimize our algorithm by only considering the difference between the angles of measurements.
Intuitively this is justified by considering that we can choose an arbitrary basis for our system.
Using that fact we can fix A0, B0, and C0 and run the loop only on the second measurement of
each party. This will reduce the complexity to O(n3).

IV.2. Strategy for Bipartite Inequality (2,m,2). Once we have a state |ψ〉 that satisfies the
previous condition, we need to find an inequality and strategy that uses the reduced density operator
ρAB = TrC(|ψ〉〈ψ|).

For simplicity we started by looking at inequalities with m = 2. However, in Ref. [9] Brunner et
al. show that the CHSH inequality [12] is the only tight Bell inequality for the (2,2,2) case, which
means that if there is a strategy that violates a different inequality, then it will also violate the
CHSH inequality. Using the same shorthand used in Eq. (2), we can write the CHSH inequality
as:

(11) 〈CHSH〉 = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2

Similar to the previous section we need to use run loops on the measurement angles, however, we
can first group the measurements in the following manner:

(12) 〈CHSH〉 = 〈B0(A0 +A1)〉+ 〈B1(A0 −A1)〉 ≤ 2

Now if we run two loops for A0 and A1, our problem would reduce to maximizing:

〈CHSH〉 = TrAB(B0 ⊗ (A0 +A1) · ρAB) + TrAB(B1 ⊗ (A0 −A1) · ρAB) =

=
∑

i={0,1}

TrAB(Bi ⊗Xi · ρAB)(13)

where X0 = A0 + A1 and X1 = A0 − A1 are known. Next, we can use partial trace to trace out
qubit A: ∑

i={0,1}

TrAB(Bi ⊗Xi · ρAB) =
∑

i={0,1}

TrB(Bi · TrA(Xi ⊗ IB · ρAB))

=
∑

i={0,1}

TrB(Bi · Zi)
(14)

where Zi = TrA(Xi⊗ IBρAB) are known. At this point, we can use Hilbert-Schmidt decomposition
to rewrite the 2× 2 matrices Bi and Zi as:

Bi = bII + bXX + bY Y + bZZ

Zi = zII + zXX + zY Y + zZZ
(15)

where bj and zj are real coefficients with
∑

j b
2
j =

∑
j z

2
j = 1. Using this decomposition, we can

rewrite the traces as:

(16)
∑

i={0,1}

TrB(Bi · Zi) =
∑

i={0,1}

b̄ · z̄

Thus, we can rephrase the optimization problem:

given M =
∑

λi|vi〉〈vi|

maximize |〈vi|ψ〉|2

subject to |〈ψ|ψ〉|2 = 1

(17)
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is again reduced to maximizing a bounded dot product which means the optimal value is achieved
when:

b̄ = z̄

so:

B0 = TrA((A0 +A1)⊗ IBρAB)

B1 = TrA((A0 −A1)⊗ IBρAB)
(18)

However, we found out that the reduced density operator that we found in Sec. (1.3) does not
violate the CHSH inequality. Thus, we needed to look into (2,3,2) inequalities.

IV.3. The I3322 Inequality. The I3322 inequality, studied in [7], is an inequality consisting of
three possible 2-outcome measurements on two particles and can be written as:

〈I3322〉 = 〈A0B0〉+ 〈A1B0〉+ 〈A2B0〉 − 2〈IAB0〉
+〈A0B1〉+ 〈A1B1〉 − 〈A2B1〉 − 〈IAB1〉
+〈A0B2〉 − 〈A1B2〉
−〈A0IB〉 ≤ 0

(19)

where 〈AiBj〉 ∈ [−1, 1] for i, j ∈ {0, 1, 2} denotes outcome of parties A and B measuring their
qubits in i-th and j-th measurement setting respectively, and IA and IB denote measuring using
the identity operator. Using the numerical approximation similar to the methods above we can
show that maximum value of this inequality using a pair of qubits (two dimensional system) is 0.25
achieved using the state |Ψ−〉 = 1√

2
(|01〉+ |10〉). The measurements for the maximum violation all

lie on the zx-plane in the Bloch sphere: A0 = 0, A1 = π
3 , A2 = 2π

3 , B0 = 4π
3 , B1 = π, and B2 = 2π

3 .
We are interested in this inequality because it can be violated by states that do not violate

the CHSH inequality. In particular, using the methods described above we found measurement
settings that violate this inequality using our reduced density operator in Eq.3. The highest value
of violation was found to be 0.0554 using measurements in the form of Eq. 6.

IV.4. Discussion and Future Directions. The main focus in the continuation of this project
will be on working out a complete protocol using the aforementioned |W−〉 state. Specifically, a
search for a better measurement for getting a key bit using a more general form of measurement
will be useful.

Further, an investigation regarding a generalization of concurrent non-locality seems to be an
interesting direction for future research. Is there a non-local state such that any reduction would
lead to another, perhaps weaker, non-local state? In particular, the prospect of a multipartite
quantum key distribution protocol that allows any subset to generate a separate key is a very
fascinating question for the author.
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Appendix A. GHZ Inequality

A.1. The Game. Suppose Alice, Bob, and Carol are three quantum information researchers each
imprisoned in a different isolated lab and they are allowed to communicate only with a Referee.
Everyday the Referee sends each one of them an email containing a single letter, either X or Y, with
the condition that only an even number of them will receive Y; i.e., either all receive X (XXX), or
one of them receives X and the other two receive Y (XYY, YXY, YYX). By the end of the day the
researchers are required to respond to the email with either +1 or -1 and the Referee will extend
their research funding if and only if the product of their replies is +1 in the case of XXX or -1
otherwise. As it is usual in these games, the participants can devise a strategy before the beginning
of the game but once it begins no communication is permitted.

A.2. The Problem. In the first glance it is easy to come up with a strategy that guarantees
winning in 3/4 of the games, but is there a strategy that guarantees winning all the time?

Let AX denote Alice’s response if she received an X and AY denote her response if she received
a Y and so on for BX , BY , etc. Then, we can formulate the requirements for winning the game:

AXBXCX = +1

AXBY CY = −1

AYBXCY = −1

AYBY CX = −1

But here we have a contradiction because the product of the left sides is a perfect square and the
outputs are all real: A2

XA
2
YB

2
XB

2
Y C

2
XC

2
Y = −1

There could be other classic strategies with probabilistic outputs. The proof of impossibility of
those are very similar to this case and can be found in Ref. [15].

A.3. The Solution. Now that the researchers are confident that classical strategies are not helpful
in saving their funding, the trio decide to put their quantum information research to use. They
begin by creating three entangled particles in the following state:

|γ〉 =
1√
2

(|000〉+ |111〉)

This entangled state is known as the GHZ-state for Greenberger, Horne, and Zeilinger, who studied
it first in 1989 [14]. After taking one part of the state each, they go to their labs and measure their
qubits according to the letter in the Referee’s email: if the email contains X, the receiver measures
their share in the basis of the eigenstates of the Pauli X operator:

|+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉 − |1〉)

and outputs +1 if the outcome of the measurement is |+〉 or -1 for |−〉. Similarly if the email
contains Y, the receiver measures their share in the basis of the eigenstates of the Pauli Y operator:

|+ i〉 =
1√
2

(|0〉+ i|1〉) and | − i〉 =
1√
2

(|0〉 − i|1〉)

and outputs +1 if the outcome of the measurement is |+ i〉 or -1 for | − i〉.
Using this system, the probability of an odd number of researchers observing |−〉 if the Referee

sent X to everyone (i.e., they all measured in |+〉 and |−〉 basis) will be zero 1, so in the case of
XXX, always an even number of measurements result in -1 and the final product will be +1.

1For instance: |(〈−| ⊗ 〈+| ⊗ 〈+|)|γ〉| = 0
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For the other three cases the probability of an even number of researchers observing |−〉 or |− i〉
will be zero 2, so always an odd number of measurements result in -1 and the final product will be
-1.

Thus, using this quantum strategy, the researchers can guarantee perpetual funding.

Appendix B. A GHZ-based Tripartite QKD Protocol

Here we describe a protocol based on the GHZ game in the honest majority:

Tripartite QKD Using GHZ-State
Assumptions: Three honest parties A, B, and C have prepared N entangled GHZ states and

each have access to one of the qubits in their own spatially isolated laboratories. Further, we
assume that parties have access to an authenticated channel.

(1) Each party begins making random measurements using Pauli operators X, Y , and Z
with probabilities Px, Py, and Pz; for instance, if Px = Py = Pz = 1

3 then each party

randomly chooses N
3 qubits and performs a measurements in the Z basis ({|0〉, |1〉})

and similarly for X and Y basis. Denote AZi as the outcome of a measurement in Z
basis on the i-th qubit of party A.

(2) Each party publishes an ordered list of the basis of each performed measurement.
(3) For each GHZ state, if the measurement on all qubits has been in X basis, or if one

qubit has been measured in the X basis and the other two have been measured in the
Y basis, the parties publish the measurement outcomes over the authenticated channel;
for instance, if all measurements on the i-th state have been in X basis, A publishes
AXi , B publishes BX

i , and C publishes CXi .
(4) The parties calculate the product of the outcomes for each GHZ state in the published

list. That is, for the previous example, they calculate OXXXi = AXi B
X
i C

X
i . Next,

they calculate the average of all OXXXi , OXY Yi , OY XYi , and OY Y Xi and find their sum:

S =
∑N

i=0O
XXX
i +OXY Yi +OY XYi +OY Y Xi .

The value of ε = 1− S describes the trustworthiness of the measurement devices.
(5) Finally, for each GHZ state that was measured using the Z basis by all parties, the

parties use the outcome as a key bit. This bit will be the same for all parties because
the probability of measuring anything other than |000〉 and |111〉 is zero while the
probability of measuring those two states is equal:
|〈000|GHZ〉|2 = |〈111|GHZ〉|2 = 1

2

Note that we have not provided a proof for the security of this protocol and it is not robust
against loss of a qubit.

Appendix C. Source codes

All computer programs used in this research have been written using Sage and Matlab and the
scripts can be found at the following address:
http://www.its.caltech.edu/~msayrafi/surf-2014/codes

2For instance: |(〈−i| ⊗ 〈+i| ⊗ 〈−|)|γ〉| = 0

http://www.its.caltech.edu/~msayrafi/surf-2014/codes
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