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Abstract: Quantitative estimates of the impacts of climate change on economic outcomes are an 
important and consequential input to public policy, and researchers are increasingly generating 
such estimates.  We show that the vast majority of these estimates fail to account for well-
established uncertainty in future temperature and rainfall changes, leading to downward-biased 
standard errors and potentially misleading point estimates. In particular, out of nearly 200 papers 
that make quantitative climate impact projections for economic, political or social outcomes, the 
median number of climate models used is just two, with disproportionate dependence on only a 
few of the over 20 recognized climate models. We re-examine seven of the most cited studies in 
this literature and show that accounting for climate uncertainty leads to confidence intervals 
around estimated impacts that are up to five times larger than estimates using the standard 
methodology in the literature.  Estimates that ignore climate uncertainty appear particularly 
likely to understate the likelihood of “worst-case” outcomes, an important policy parameter.  
Incorporating climate uncertainty into future economic impact assessments will be critical if 
policymakers are to be supplied with the best possible information on the mean and extremes of 
potential impacts, both in agriculture and beyond. 
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Introduction 

Leading economics and social science journals have published an increasing number of articles 

in recent years on the projected effects of global climate change on important economic 

outcomes such as health, agriculture, and aggregate economic activity. Results of these studies 

have featured prominently in public policy debates, informing decisions about appropriate 

investments in greenhouse gas emissions reductions as well as in measures designed to help 

societies adapt to a changing climate.  Such investments represent potentially large amounts of 

resources.  For instance, a high profile recent assessment concluded that expected future climate 

damages warrant an immediate annual investment of 1-2% of global GDP to avoid the worst 

effects of climate change (Stern 2007).1 Similarly, the recent US$100 billion pledged in annual 

transfers from rich to poor countries to help the latter adapt to expected climate impacts is close 

to the total current annual foreign aid transfer from rich to poor countries.ʹ  Generating credible 

estimates of climate impacts is thus of considerable public concern. 

As in empirical work more broadly, climate impact estimates could be expected to 

provide both a “best guess” of potential impacts – that is, an unbiased point estimate – as well as 

a sense of the uncertainty around this estimate.  Unfortunately, a methodological flaw common 

to many recent impact studies results in them often providing neither the “best guess” of possible 

impacts nor a full characterization of the uncertainty around this estimate. To quantify potential 

impacts, these studies typically combine estimates of the historical relationship between climate 

variables and outcomes of interest with projections of future changes in climate, the latter 

typically derived from global climate models.  Although such studies are typically careful to 

��������������������������������������������������������
1 In 2008, Stern increased the original 1%-of-GDP figure to 2%.  See 
http://www.guardian.co.uk/environment/2008/jun/26/climatechange.scienceofclimatechange�
ʹ E.g. see http://unfccc.int/resource/docs/2009/cop15/eng/l07.pdf.  Total foreign aid flows in 2009 equaled roughly 
$120 billion (www.oecd.org/dac/stats/data).�
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document the statistical uncertainty inherent in the historical relationship between climate 

variables and outcomes of interest, they rarely account for the large degree of climate uncertainty 

found in existing projections of climate change itself. Existing studies overwhelmingly rely on 

projections from only one or a handful of climate models, despite the availability of over 20 such 

models that are in wide use in the climate science community, the frequently large discrepancies 

across models, and the lack of evidence that any particular subset of models is more reliable than 

others for long-term projections (Randall et al. 2007; Meehl et al. 2007). Our survey of this 

growing literature (discussed in detail below) reveals that of the nearly 200 papers that make 

quantitative climate impact projections for economic, political or social outcomes, the median 

number of climate models used is just two, with disproportionate dependence on only a few of 

the over 20 recognized models.  Many studies rely on a single model, the Hadley Centre Climate 

Model͵, despite the lack of systematic evidence that it is any more trustworthy than alternatives, 

and the ready availability of data from at least 15 models since at least 2000. 

Because climate models can disagree on both magnitude and even the sign of future 

changes in key climate variables, point estimates using a single projection of future climate can 

mislead, and the range of possible outcomes around this point estimate will be substantially 

understated if the full range of climate uncertainty is not accounted for.  Failure to incorporate 

this uncertainty into impact studies thus renders much of the rapidly growing literature on the 

economics of climate change a potentially poor guide for public policy.  

In this article, we – a team of both climate science and social science researchers – 

provide a readily useable analytical approach that directly addresses the role of climate 

uncertainty in estimates of climate change impacts.  To illustrate our approach, we re-examine 

��������������������������������������������������������
͵This includes earlier generations of the Hadley Model, now superseded by more recent modeling output. See 
(Gordon et al. 2000; Johns et al. 2006; Johns et al. 1997)�
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data from seven well-cited articles in the climate impacts literature that explore potential impacts 

on a variety of outcomes, such as agricultural productivity, economic growth, and civil conflict. 

To isolate the role of climate uncertainty from other study characteristics that might also affect 

impact estimates – for instance, authors’ choices about the study sample or econometric 

specification – we remain agnostic on these choices and focus attention on the authors’ own 

preferred analytical approach in each study.  The results we present here are thus not meant to 

provide definitive impact projections for particular outcomes, but instead to demonstrate the 

importance of accounting for climate uncertainty in generating these projections. 

We show that accounting for climate uncertainty in these studies is both statistically and 

economically important. Doing so yields different point estimates, a much wider range of 

projected impacts, and much more negative “worst case scenarios”.  In particular, failure to 

account for climate uncertainty can underestimate the range of potential climate impacts by a 

factor of five or more, relative to an approach that only considers uncertainty in the historical 

relationship between climate variables (such as temperature and precipitation) and the outcome 

of interest.  In fact, even with perfect knowledge of the mapping from climate to outcomes, 

climate uncertainty alone generates a very wide range of potential impacts: depending on the 

choice of climate model, impacts of climate on U.S. farmland values can move up or down by 

half a trillion dollars by the mid-21st century, GDP per capita growth in poor countries could 

decline over that period anywhere between 20-50% (relative to a world without climate change), 

and the incidence of African civil conflict could increase by “just” 40% or could more than 

double.  For analysts and policy-makers interested in the “left tail” of the climate change impact 

distribution (see Weitzman 2009), we show that failing to account for climate uncertainty 
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understates the magnitude of the “worst case” scenario by more than a factor of two in most 

articles we examine. 

There are also instances when accounting for climate uncertainty is less important.  In 

particular, when an analysis can rule out an important historical relationship between climate and 

the outcome of interest – i.e. the relationship between climate and the outcome is a “precise 

zero” – then any change in future climate will be projected to have similarly minimal impacts on 

that outcome.  In other words, and unsurprisingly, when climate does not affect a particular 

outcome, neither does climate uncertainty.  Nevertheless, because most papers in this literature 

either find large historical effects of climate, or at least are unable to definitively rule them out, 

our results suggest that accounting for climate uncertainty will substantially shape impact 

estimates in most settings. 

The structure of the remainder of the paper is as follows.  Section 2 presents a thorough 

literature review that documents the use of global climate models in economics and social 

science research, and presents novel quantitative evidence on the widespread failure of recent 

studies to take climate uncertainty into account.  Section 3 presents our approach and quantifies 

the importance of accounting for climate uncertainty when estimating potential impacts across a 

range of economic outcomes. The final section concludes with specific suggestions for how 

climate uncertainty should be incorporated into future research. 

 

2. Climate models in recent economics and social science research 

2.1 The science of modeling climate change 

A basic overview of climate science models and terminology is useful before we discuss the 

recent economics literature on the impacts of climate change.  The science of understanding past 
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changes in climate and projecting possible future changes has evolved rapidly in recent years.  

The main tools for projecting future climate are coupled General Circulation Models (GCMs), 

which are detailed computer models that numerically approximate fundamental physical laws at 

time and space scales appropriate for representing global climate (Randall et al. 2007). These 

models are “coupled” in the sense that the interaction of different components of the climate 

system – the ocean with the atmosphere, for example – is explicitly included in the numerical 

calculations.  Many such models are currently in use, reflecting efforts by different research 

groups around the world to develop ever more refined representations of the complex physical 

processes that determine the state of the climate. 

There are two basic sources of uncertainty in model projections of future changes in 

climate: (i) imperfect knowledge of the future trajectories of variables that might affect the 

climate system (most notably, greenhouse gas emissions), and (ii) imperfect knowledge of how 

changes in these variables translate into changes in climate.  The former we will refer to below as 

“emissions uncertainty”, and the latter simply as “climate uncertainty”.  

Emissions uncertainty is typically captured by running a given climate model under 

multiple future emissions “scenarios”.  To facilitate cross-model comparability, the 

Intergovernmental Panel on Climate Change (IPCC) developed a standardized set of these 

scenarios, some subset of which almost all modeling groups use as inputs into their modeling 

efforts.  Known as the SRES scenarios (from the Special Report on Emissions Scenarios), these 

scenarios employ different assumptions about economic growth and technological change to 

span a range of different rates of change in anthropogenic (man-made) radiative “forcing”.  

These scenarios provide the basis for the various climate model projections reported in the 

IPCC’s most recent assessment of the “state of the science”, the 2007 Fourth Assessment Report, 
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in part for which it was awarded the Nobel Prize.Ͷ  Conditional on the use of a particular 

emissions scenario, “climate uncertainty” derives from the different modeling choices climate 

science research groups make about how to best represent the underlying physical relationships 

and about what baseline conditions should be used to initialize the models.  

While emissions are uncertain from the perspective of the econometrician, they are in 

principle a policy choice and are typically treated differently in the climate science community 

than is the uncertainty in how the climate system responds to a given level of emissions.  In 

particular, even given a perfectly defined trajectory of anthropogenic emissions, climate 

projections will still be subject to uncertainty arising from lack of perfect knowledge of the 

physical processes at work in the system (often termed model uncertainty) and from inherent, 

chaotic variability (internal variability) within the climate system which is manifest in a large 

sensitivity to initial conditions. Although these uncertainties may be reduced through further 

research, the rate of progress has been fairly slow and there are fundamental limits to the 

reduction of uncertainty associated with initial conditions (see Deser et al. 2012). Therefore, to 

ensure that we are not conflating policy uncertainty with more fundamental physical uncertainty, 

we focus primarily on the role of the latter in what follows. 

To begin to illustrate the extent of climate uncertainty, Figure 1 presents projections of 

climate change in primary U.S. agricultural regions between 2000 and 2080-2100, using output 

from 20 different climate models contributing to the IPCC’s Fourth Assessment Report.ͷ  

��������������������������������������������������������
ͶA new framework for emissions scenarios is now being used to allow exploration of a wider range of possible 
climate policies and more rapid response to relevant research for future IPCC assessments (Moss et al. 2010).�
ͷ Actual model output is compiled and made publicly available in a standard data format by the Coupled Model 
Intercomparison Project of the World Climate Research Programme (http://cmip-pcmdi.llnl.gov/).  The models used 
in this paper are BCCR, CCCMA.t63, NCAR.CCSM, CCRM, CSIRO, ECHAM, GFDL_CM2.0, GFDL_CM2.1, 
GISS.AOM, GISS.EH, GISS.ER, HADcm3, HADGEM1, IAP, INMCM3, IPSL, MIROC.Hires, MIROC.Medres, 
MRI, and NCAR.PCM, which constitutes nearly all of the available ensemble, and the models with the appropriate 
combination of 20th and 21st century runs for our analysis at the time of writing. For a useful overview of available 
model output, refer to: http://www-pcmdi.llnl.gov/ipcc/about_ipcc.php. �
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Climate models uniformly predict that temperatures will warm over U.S. agricultural regions, but 

disagree on both the sign and magnitude of precipitation changes.  Furthermore, within an 

emissions scenario the variation in model predictions can be large.  In the oft-used A1B 

scenario͸, for instance, the projected mean temperature across the full ensemble of 20 models 

increases by 3.5 deg C (6.3 deg F), but the 95% confidence interval ranges from roughly 2 deg C 

(3.6 deg F) to 6 deg C (10.8 deg F).  For precipitation, the ensemble mean projected change is 

close to zero, but individual models project growing season precipitation rising or falling by as 

much as 20%. Recall that these differences across models are driven by assumptions made in the 

scientific modeling of climate rather than uncertainty about future greenhouse gas emissions.  

 An immediate question is how researchers should treat this range of climate projections.  

One tempting solution, and the implicit (or explicit) approach of the vast majority of the 

literature surveyed below, is to identify a single model or small subset of models that appear 

more “trustworthy”, and use only their output in impact projections.  This approach 

underestimates the uncertainty associated with long-term climate projection in at least two ways. 

First, in cases where only a single realization (that is, one “run” from a single set of initial 

conditions) for a single model is used, the uncertainty arising from internal variability (i.e., 

sensitivity to initial conditions) is neglected. This uncertainty due to internal variability can be 

large relative to other sources of uncertainty, especially for projections over the next few decades 

and for precipitation (Hawkins and Sutton 2009). Second, even when multiple realizations of a 

single model are used, an analysis based on a single model ignores the uncertainty associated 

with incomplete knowledge of all relevant physical processes (i.e., model uncertainty). Since the 

climate science literature finds little evidence that particular models consistently outperform 

��������������������������������������������������������
͸ The popularity of the A1B scenario is due to its assumptions of robust economic growth, moderate increases in 
global population, rapid adoption of technology, and “balanced” reliance on fuel sources (hence "B").�
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others, or that any measure of performance on past climate observations helps to meaningfully 

narrow the future range of climate projections (Knutti 2010; Tebaldi and Knutti 2007; Gleckler, 

Taylor, and Doutriaux 2008), there is no reasonable climate scientific rationale for restricting 

analysis to a single model or small number of models.  In contrast to the recent economics of 

climate change literature, and as evidence of this point, most studies of future climate impacts 

carried out by climate scientists are characterized by model “democracy” (Knutti 2010). In this 

method, each model that meets IPCC standards gets one “vote”, and the votes are combined into 

an ensemble projection whose distribution is then characterized (Meehl et al. 2007).  

 

2.2 The existing social science literature on climate change impacts  

We conducted an extensive review of the climate impact literature, with particular attention to 

papers that use climate model information to make quantitative projections about the impacts of 

climate change on economic, political and social outcomes. We adopted a broad definition of 

“climate model”, including in our review those papers using explicit output from GCMs (the 

majority) as well as other papers that used quantitative climate projections of any kind, such as 

simple “uniform” warming scenarios of, say, a 1 deg C increase in temperature.  Outcomes of 

interest included estimates of sector-specific or economy-wide economic damages resulting from 

climate change, as well as estimates of climate impacts on physical outcomes with clear 

economic consequences, such as on agricultural productivity, water resources, human morbidity 

and mortality, or violent conflict.  We limited our search to peer-reviewed published articles as 

well as unpublished papers in well-known working paper series, such as the National Bureau of 

Economic Research and the World Bank’s Policy Research series. These search criteria yielded a 

large number of studies. Our review is almost surely an underestimate of the total number of 
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papers in this literature, but captures the most highly cited work as well as much of the recent 

work (over half of the papers we reviewed were published in 2007 or later).͹  The total number 

of studies we review are shown in the left panel of Figure 2.  As shown in the figure, studies 

focusing on agricultural impacts continue to account for the majority of the published studies on 

climate change impacts, although their share has fallen in recent years. 

 Social scientists’ use of climate models is surprising in light of climate scientists’ general 

preference for the democratic use of climate model output.  Among the nearly 200 papers that 

made quantitative projections of future climate impacts, the median number of climate models 

used is just two (Table 1).  Studies on the agricultural impacts of climate change – the most 

researched area, accounting for 53% of all articles – do little better: the median number of 

climate models used is just three.  Research on climate impacts in other sectors, such as human 

health and water resources, show similar patterns. 

 The median number of climate models used has also been roughly unchanged since 

scientific concern about climate change began in earnest in the early 1990s, as shown in the right 

panel of Figure 2.  Importantly, this is despite the fact that since at least 2000, output from at 

least 15 climate models has been publicly available in a central online database.8 

 It might be more defensible to use only a small subset of the available climate model 

ensemble if researchers drew their subset of models at random.  For instance, given the 

distribution of temperature projections for U.S. agriculture, simple simulations suggest that two 

models drawn at random will, in expectation, capture roughly 35% of the total ensemble range of 

temperature projections (results available upon request).  However, researchers do not appear to 

be drawing models randomly.  Despite the availability of over 20 IPCC-recognized models, 

��������������������������������������������������������
͹ Our review of the literature extended through August 2012, so misses articles published since then. �
ͺ�Model output is compiled and made publicly available at http://cmip-pcmdi.llnl.gov/, as discussed above.  �
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researchers show a strong preference for models from one particular research group, the Hadley 

Centre (in the United Kingdom), perhaps because their data had historically been available to 

researchers in a particularly user-friendly format. Roughly half of the studies we reviewed used 

Hadley models, and nearly a sixth of all the studies used only a Hadley model.ͻ 

This apparently “undemocratic” use of models is particularly troubling given that 

projections from the Hadley models do not always reflect the central tendency of the full 

ensemble of climate models.  As Figure 1 shows for U.S. agricultural regions, precipitation 

projections from the most recent coupled model from the Hadley Centre are near the ensemble 

mean, but temperature projections are outside the ensemble interquartile range.  Again, the 

climate literature offers no evidence that the Hadley projections are any more (or less) 

trustworthy than other models, implying that the singular use of Hadley likely yields a poor 

representation of the range of possible outcomes.  We next explore what the over-use of the 

Hadley model – or any other model or small subset of models, for that matter – implies for 

projections of climate impacts. 

 

3. Quantifying climate uncertainty 

3.1 The basic approach 

Studies typically proceed in two steps to quantify potential impacts of climate change on 

outcomes of interest: first, estimate the historical relationship between climate variables and 

outcomes of interest, and then evaluate these estimates at future changes in climate.  To fix ideas, 

consider the regression specification: 

௜ݕ ൌ D൅ �݂ሺܿ௜ሻ ൅�Gݔ௜ ൅ H௜     (1) 

��������������������������������������������������������
ͻ This again includes earlier variants of the Hadley Model, superseded by more recent output from their team.�
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where outcome y in geographic unit i is a function of climate in that location ci, covariates xi and 

an error term.  In the simplest setup, researchers model outcomes as a simple linear function of 

temperature and precipitation, ݂ሺܿ௜ሻ ൌ ଵߚ ௜ܶ ൅ߚ�ଶ ௜ܲ, with the latter, for example, representing 

the average temperature or total precipitation over an agricultural growing season in a given 

location.  The ߚ terms are estimated using historical data, and then the projected impacts of 

climate change are calculated by multiplying these coefficient estimates by projected changes in 

the relevant climate variables over time (ȟܶ and ȟܲ here) as derived from global climate models. 

 The proper derivation of these changes is worth noting. For instance, ȟܶ by “end-of-

century” (i.e. 2080-2100) is calculated by differencing climate model projected average 

temperature over 2080-2100 in a given area and projected average temperature over the years 

1980-2000 in that area.  The latter are “projected” because climate model simulations typically 

exhibit biases for current climate in some regions, meaning observed present-day temperatures 

and modeled present-day temperatures might not be the same.  Differencing future model 

projected temperatures and current observed temperatures would introduce bias into estimates of 

temperature changes, and thus the commonly accepted approach is to difference future and 

current modeled temperature.10  To quantify climate uncertainty, this calculation is then repeated 

for each climate model in the IPCC model “ensemble” mentioned above.   

The implicit assumption in this approach is that past responses to climate as captured in 

the ߚԢݏ reflect how outcomes will respond in the future to similar changes in climate, that is, that 

any future adaptations that agents are able to make in the face of a changing climate are fully 

reflected in their observed ability to adapt to past changes. While this assumption appears strong, 

scholars have noted that in at least two domains of interest – agricultural productivity and 

��������������������������������������������������������
ͳͲSee Auffhammer et al. (2011) for a recent review of the appropriate use of climate data.�
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economic growth – there is surprisingly little evidence that outcomes are less sensitive to long-

run shifts in climate than they are to short-run shifts, implying limited adaptation (see discussion 

in Schlenker and Roberts 2009; Burke and Emerick 2012; Dell, Jones, and Olken 2012).  Perhaps 

more importantly, it is in principle possible to assume any level of future adaptation that the 

analyst desires by scaling the ߚԢݏ up or down to the desired level.  For our purposes here, we 

follow the studies we review in assuming that future adaptation to climate is reflected in past 

climate sensitivities, and multiply the ߚԢݏ estimated using historical data by future changes in 

climate to generate projected impacts. 

 

3.2 Climate impacts on agriculture, economic growth, and civil conflict 

We apply our approach to seven published studies. In keeping with the larger literature, most of 

the studies we examine focus on potential climate impacts on agriculture, but we also revisit 

studies that examine impacts on economic growth and civil conflict. Table 2 provides details on 

the studies’ outcome measures, sample, climate model choices, regressions specifications and 

functional form for historical climate (in columns 1-5). At the time of writing, these articles have 

been cited a collective total of over 1,500 times.11 We first provide a brief overview of the 

studies, and then demonstrate the importance of climate uncertainty for their projected impacts.  

The social science literature on climate impacts has focused disproportionately on 

potential impacts in the agricultural sector (Table 1).  This is particularly true in economics, 

where the most cited climate change impacts papers focus almost exclusively on potential 

damages in U.S. agriculture.  Such a focus is understandable: temperature and precipitation enter 

directly into the agricultural production function, and while U.S. agriculture is not uniquely 

affected by climate, the U.S. is the world’s largest exporter of agricultural goods and one of its 
��������������������������������������������������������
11 Based on Google Scholar (as of September 2012).�
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largest overall producers.ͳʹ  The outsized impact that fluctuations in U.S. production have on 

global food markets thus makes potential climate impacts on U.S. agriculture a significant global 

public policy concern. 

In a seminal paper, Mendelsohn, Nordhaus and Shaw (1994) (henceforth MNS) use a 

hedonic approach to relate agricultural land values in U.S. counties to average local climate.  If 

land markets are well-functioning (which is a reasonable assumption in the U.S.), then the 

hedonic approach should capture the impact of changes in climate on agricultural production 

value, net of any adaptive measures that farmers can take in response to a changing climate (e.g., 

planting different crops or even switching to non-crop income sources).  MNS find a muted 

response of land values to climate, and project that climate change could on net in fact benefit 

U.S. agriculture. 

The limitation of this cross-sectional approach is that average local climate could 

correlate with many other unobserved factors that also affect land values, biasing coefficients on 

climate variables in an unknown direction.  In follow-up work, Schlenker, Hanemann, and 

Fischer (2005) (henceforth SHF) show that irrigation was an important omitted variable in the 

MNS study, and that accounting for irrigation leads to much more negative projected impact 

estimates for U.S. agriculture.  More recent work has used panel data to further address omitted 

variables concerns.  Deschenes and Greenstone (2007) (henceforth DG) relate county-level 

deviations in weather to deviations in agricultural profits, finding a limited effect of weather on 

profits and thus small potential impacts of future climate change on U.S. agricultural 

profitability.  Building on DG, Fisher, Hanemann, Roberts, and Schlenker (2010) (henceforth 

FHRS) adopt DG’s county fixed-effects strategy but take issue with DG’s data and specification, 

��������������������������������������������������������
ͳʹ For instance, based on the most recent (2008) data from the UN Food and Agricultural Organization, the U.S. is 
the second largest cereal producer (behind China) and by far the largest exporter.  See: http://faostat.fao.org.�
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and show that under alternate specifications and updated data, future climate impacts on 

productivity and profitability could actually be quite negative. 

 Importantly, these four studies (MNS, SHF, DG, and FHRS) all appeared in the same 

leading economics research journal (the American Economic Review), and all projected impacts 

using a single climate model, the Hadley model. There remain substantial disagreements among 

these studies concerning the appropriate econometric specification of the historical relationship 

between climate and agricultural outcomes. However, we remain agnostic on these differences in 

this paper and quantify impacts as would have been done by the study authors themselves had 

they adopted our approach to dealing with climate uncertainty. 

 We also revisit three other papers examining potential impacts outside of U.S. 

agriculture.  Schlenker and Lobell (2010) (henceforth SL) use a panel of African countries over 

1961-2002 to estimate climate change impacts on the productivity of the primary African crops, 

finding large historical sensitivities to temperature increases and thus large potential losses under 

future climate change.  Burke, Miguel, Satyanath, Dykema, and Lobell (2009) (BMSDL) also 

use a panel of African countries but explore the role of climate in African civil war.  They find 

that civil war has been similarly strongly responsive to past variation in temperature in Africa, 

and that future warming could greatly increase the incidence of war.  Both SL and BMSDL use 

multiple climate models (16 and 20, respectively) to project impacts, but we can apply the same 

approach as in the other studies to quantify the importance of climate uncertainty in overall 

impact projections, and to get a sense of how SL and BMSDL’s conclusions might have changed 

had they not used a large number of climate models. 

 Finally, Dell, Jones and Olken (2012) use a global panel of countries over the period 

1950-2003 and document a strong negative relationship between economic growth and warmer-
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than-average temperatures in poor countries (but not rich countries).  In the well-cited working 

paper version of the article, they project climate impacts on end-of-century GDP levels using a 

single climate model, finding large effects on per capita incomes in poor countries but limited 

overall impact on global GDP as a whole. (The lack of an effect on global GDP is a result of the 

fact that rich countries were largely unaffected by changes in temperature over their study 

period, and rich countries account for the vast majority of global income.) 

 

3.3 Quantifying the importance of climate uncertainty 

For each of the seven studies we re-examine, in Figure 3 we estimate the impacts by mid-century 

(2040-2060) associated with each of fifteen different climate models for each of three emission 

scenarios, relative to a 1980-2000 baseline. The Hadley model with an A1B emission scenario is 

highlighted as a dark vertical line given the prominence of this model-scenario combination in 

the literature (Table 1). Even ignoring regression uncertainty (as we do in this figure), a large 

range of outcomes is predicted owing to the different climate models.13  In three of the seven 

studies, the range of projected impacts (under the A1B scenario) includes both positive and 

negative changes in outcomes, as also shown in Table 2 (column 6).  

We next quantify the role of climate uncertainty relative to regression uncertainty, by 

estimating the distribution of projected impacts when (i) climate is varied but regression 

coefficients are fixed at their point estimates (as in Figure 3), (ii) climate is fixed at the model 

giving the median estimated impact, but regression coefficients are resampled to reflect 

��������������������������������������������������������
ͳ͵��������������������������������������������������������������������������������ǡ�������������������	������͵ǡ�
����������������������������������������ǡ���������������������������������������������Ǥ������������������
�����������������ǡ�������������������������ͳ��������������	������ͶǤ�
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regression uncertainty14, or (iii) both climate and regression coefficients are varied, to reflect 

uncertainty in both factors. The size of the 95% confidence interval of projected impacts in case 

(iii) was then compared to that for case (ii) as one measure of how much climate uncertainty 

adds to the total uncertainty above and beyond the effect of regression uncertainty alone. These 

results are presented in Figure 4, and in column 7 of Table 2. 

Total uncertainty increases only moderately when climate uncertainty is accounted for in 

the two studies using African data, mainly reflecting the fact that regression uncertainty in the 

historical relationships was already quite large for those studies. For the four studies focused on 

U.S. agriculture impacts, however, the regression uncertainty was relatively small and 

accounting for climate uncertainty greatly increases the 95% range of estimated impacts.  In SHF 

and FHRS, the mid-century 21st century 95% confidence interval increases five-fold when 

accounting for both climate and regression uncertainty than when focused solely on regression 

uncertainty.  The DJO study is an intermediate case, with overall uncertainty increasing by a 

sizeable 30% when climate uncertainty is considered. 

It is beyond the scope of this study to determine whether the increasing uncertainty 

generated by considering climate uncertainty should change the main conclusions or policy 

recommendations of the individual articles we re-examine. Yet we note that the broader 

implications of uncertainty will often depend on how bad the “worst-case” outcomes are. 

Specifically, if increased uncertainty was entirely in the direction of more positive outcomes, 

then the increased uncertainty would likely reduce the perceived need for public action on 

climate change.  However, if widening the “tails” of the distribution of outcomes increases the 

perceived chance of “catastrophic” left-tail outcomes, then additional uncertainty could imply a 

��������������������������������������������������������
14 In particular, we bootstrap the main specification in each study, sampling observations 1000 times with 
replacement.�
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greater need for action (see Weitzman 2009, and the contrasting views in Weitzman 2011 and 

Pindyck 2011). In column 8 of Table 2, we attempt to capture left-tail climate realizations by 

comparing the 2.5th percentile outcome that accounts for climate uncertainty versus that which 

does not. In four of the seven articles we re-examine, this “worst-case” outcome is at least twice 

as large in magnitude (and negative). For example, the 2.5th percentile outcome for corn yields in 

FHRS by mid-century decreases from -20% to nearly -50% when we account for climate 

uncertainty, and the shift is similarly large and negative for land values in MNS and SHF.  

 

4.  Conclusion 

A rapidly growing research literature estimates the future economic, political and social impacts 

of climate change. We survey the existing literature and find that very few studies employ the 

full ensemble of approximately 20 climate change models that have undergone vigorous testing 

within the community of climate scientists. In fact, the median study uses just two such models, 

with the most influential recent studies on U.S. agriculture focusing on a single model (Hadley). 

As a result, most studies in the burgeoning literature on the economics of climate change do not 

capture the full range of plausible future climate variation, making their findings seem more 

precise than they actually are, and as a result making them less credible among climate scientists 

and potentially misleading for policymakers. 

 We feel that the methodological approach presented here addresses a fundamental 

shortcoming in this emerging literature. Using seven well-cited recent articles spanning a range 

of outcomes as examples, we show that failing to account for climate uncertainty can frequently 

lead to underestimating the 95% range of outcomes by a factor of five, especially when 

regression uncertainty is relatively small, as is often the case for studies using large high-quality 
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historical datasets from the United States. One consequence of underestimating total uncertainty 

is that analysts may severely underestimate the thickness of the tails of the distribution of 

outcomes, with four out of the seven studies understating a “worst-case” (2.5th percentile) 

outcomes by at least a factor of two when failing to consider climate uncertainty. 

Fully accounting for climate uncertainty sometimes generates very wide confidence 

intervals around the estimated impacts of climate change, but this greater degree of uncertainty is 

more defensible from the point of view of climate science. Failing to account for climate model 

uncertainty is rather analogous to reporting regression results without presenting standard errors. 

Stated another way, studies that focus on a single or small handful of climate models generate a 

false sense of confidence about the likely future impacts of climate change, when in fact impacts 

are actually far less certain.  The ability to choose among a wide set of critically evaluated 

climate models, with their often wide range of projected temperature and precipitation changes, 

could also leave researchers that select just one or a few such models open to the charge of 

cherry-picking. 

We thus feel that the most valid analytical approach for future social science studies on 

climate change impacts is the “democratic” standard we adopt in this paper, giving each IPCC 

model a single “vote” when carrying out the analysis, at least until such time when there is 

sufficient scientific consensus regarding the superiority of a particular model or set of models.  

Implementing the simple approach presented here should make future research on the economics 

of climate change more credible to the policymakers who depend on this growing body of 

research to make important public policy decisions, even if it means that the answers we 

researchers can provide are less certain.  
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Table 1: Studies making quantitative climate change predictions regarding economic and social outcomes 
 
 

    

Panel A: All studies Number of 
studies 

Median number 
of climate 

models used  

Mean number 
of climate 

models used 

% of studies 
that use Hadley 

Model 

% of studies that use 
only Hadley Model 

Total 188 2 4 40 13 
By sector: (% of total)     
     Agriculture 53 3 4 37 12 
     Health  15 1 2 52 28 
     Water  6 2.5 5 58 0 
     Multiple 14 2 5 35 8 
     Other 12 1 3 32 14 
 
 

    

Panel B: Studies since 2005 Number of 
studies 

Median number 
of climate 

models used  

Mean number 
of climate 

models used 

% of studies 
that use Hadley 

Model 

% of studies that use 
only Hadley Model 

Total 126 2 4.3 42 11 
By sector: (% of total)     
     Agriculture 51 3 4 48 14 
     Health  13 1 2 38 19 
     Water  7 2 6 44 0 
     Multiple 14 2.5 6 39 6 
     Other 15 1 3 26 5 
Note:  The literature review was conducted through August 2012; see text for details. "Hadley Model" includes multiple versions of the Hadley Model. 
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Table 2: Articles re-examined in this study 

Article (in 
chronological order) 

Outcome 
(1) 

Sample 
(2) 

Climate 
models 

used 
(3) 

Regression specification 
used to generate 

projections 
(4) 

Functional form for 
historical climate 

(5) 

Range of 
estimates, 

climate 
uncertainty 

alone, % 
(6) 

Total 
uncertainty / 
Regression 
uncertainty, 
% increase 

(7) 

Total uncertainty 
2.5th percentile / 

Regression 
uncertainty 2.5th 

percentile 
(8) 

Mendelsohn, 
Nordhaus and Shaw 
1994 (MNS) 

Farmland 
values 

Cross-section of 
U.S. counties, 

1982 
1 Table 3, spec. 4: with 

crop revenue weights 

Monthly 
temperature, 
precipitation  

 

(-33, 37) 86% 2.0 

Schlenker, 
Hanemann and 
Fisher 2005 (SHF) 

Farmland 
values 

Cross-section of 
U.S. counties, 

1982 
1 Table 2, spec. 1: dryland 

rural counties 

Monthly 
temperature, 
precipitation  

 

(-100, 18) 452% 2.5 

Deschenes and 
Greenstone 2007 
(DG) 

Agricultural 
profits 

Panel of  
U.S. counties, 

1982-2002 
1 Table 4, spec. 5: state x 

year FE with soil controls 

Quadratic in 
growing degree 

days, total 
precipitation 

(-6, 6) 367% 8.3 

Burke, Miguel, 
Satyanath, Dykema 
and Lobell 2009 
(BMSDL) 

Civil war 
Panel of  

African countries, 
1981-2002 

20 Table 1, spec. 1: country 
FE, quadratic time trend 

Annual average 
temperature, total 

precipitation 
(53, 117) 2% 1.0 

Schlenker and 
Lobell 2010 (SL) Corn yields 

Panel of  
African countries, 

1961-2002 
16 

Linear specification with 
temperature and 

precipitation, country FE, 
time trends 

Annual average 
temperature, total 

precipitation 
(-23, -9) 21% 1.1 

Fisher, Hanemann, 
Roberts and 
Schlenker 2010 
(FHRS) 

Corn yields 
Panel of  

U.S. counties, 
1982-2002 

1 
Table 1, spec. 1b: county 

and year FE with soil 
controls 

Quadratic in 
growing degree 

days, total 
precipitation 

(-47, -8) 462% 2.2 

Dell, Jones and 
Olken 2012 (DJO) 

GDP 
growth 

Panel of  
countries,  
1950-2008 

1 
Table 2, spec. 2: country 

FE, region x year FE, 
poor x year FE 

Annual average 
temperature, total 

precipitation 
(-50, -22) 28% 1.1 

Notes: Cols. 6-8 are for the A1B scenario. In col. 7 we present the % increase in the 95% range of estimated impacts for total uncertainty divided by regression uncertainty alone. In 
col. 8 we present the ratio of the 2.5th percentile of the distribution of outcomes under total uncertainty to the 2.5th percentile of outcomes under regression uncertainty alone. 
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Figure 2: Use of climate model data in existing literature 
 
Left panel: Cumulative number of studies making quantitative projections about climate 
impacts on socioeconomic outcomes, with agricultural studies in dark grey and other studies 
in light grey.   
 
Right panel: mean (dashed line) and median (solid black line) number of climate models used 
by these studies over time (three-year moving average).  The solid grey line represents the 
total number of climate models available to researchers since 2000, when quantifying their 
availability becomes tractable. 
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Figure 3: Projections of climate change impacts on outcomes across climate models and 
emissions scenarios by mid-century (2040-2060), relative to a 1980-2000 baseline.  
Each grey vertical line represents projected impacts derived from a single climate model 
running a single emissions scenario, assuming perfect knowledge of how the outcome 
responds to changes in climate (that is, no regression uncertainty). Dark black lines represent 
projected impacts from the Hadley model running the A1B scenario. 
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