Elementary Crystallography for X-Ray Diffraction

Introduction

Crystallography originated as the science of the study of crystal forms. With the advent of
the x-ray diffraction, the science has become primarily concerned with the study of atomic
arrangements in crystalline materials. The term crystal has been traditionally defined in
terms of the structure and symmetry of macroscopic minerals. With the ability to study
material structure microscopically with X-ray diffraction, the definition of a crystal has
become that of Buerger (1956): “aregion of matter within which the atoms are arranged in a
three-dimensional trandationally periodic pattern.” This orderly arrangement in acrystalline
material is known as the crystal structure. Much of x-ray diffraction is concerned with
discovering and describing that structure.

There is no way around it — effective application of x-ray diffraction as an analytical tool in
geology and materials science necessitates an understanding of basic crystallography. The
purpose of this section isto provide that background. The materia here is anything but
comprehensive. Crystalography is taught as a significant part of most Mineralogy courses,
and multi-course sequences in crystallography are taught in many physics, geology and
materials science graduate programs. What | will present here is skeletal treatment hopefully
substantial enough to make sense of your diffraction data. Students are encouraged to utilize
the online resources available on the XRD Resource Page
(http://epswww.unm.edu/xrd/resources.htm) to learn more.

The aspects of crystallography most important to the effective interpretation of XRD data
are:

conventions of lattice description, unit cells, lattice planes, d-spacing and Miller
indices,

crystal structure and symmetry elements,
the reciprocal lattice (covered in a separate document)

How all of thisis used in your x-ray diffraction work will be discussed over the course next
few weeks. Details of crystal chemistry, atomic and molecular bonds, and descriptive
crystallography will not be discussed, although they are all important in advanced XRD
studies, particularly in structure refinements, and other advanced topics. In class we will use
the animations on the CD-ROM tutorial from Klein (2002) to illustrate these concepts. This
program will be available on our department network so it can be used by the class for self-
study from the student workstations in our computer lab (Northrop Hall Rm. 209). | have
borrowed freely from several sources to assemble this material, including Nuffield (1966),
Klein (2002), and Jenkins and Snyder (1996).

Description of the Crystal Structure

A crystal structure is like a three-dimensional wallpaper design in that it is an endless
repetition of some motif (i.e., agroup of atoms or molecules). The process of creating the
motif involves point-group operations that define it. The process of creating the wall paper
involves trandation (with or without rotation or reflection) to create the complete structure
(which we call the lattice). Real-world crystalline structures may be simple lattice structures,
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or combinations of lattices to make complex crystalline molecules. Aslong as the structure
IS repetitive, its structure may be discovered with the application of x-ray diffraction.

Lattice Notation

Klein (2002) defines a lattice as “an imaginary pattern of points (or nodes) in which every
point (node) has an environment that isidentical to that of any other point (node) in the
pattern. A lattice has no specific origin, asit can be shifted parallel to itself.”

[001] The figure at left (Fig 1-5) shows method of

¢ notating lattice points, rows, and planes on the
basis of the crystal coordinate systems. A
point in the lattice is chosen at the origin and
defined as 000. The a, b and ¢ axes define the
directions within the crystal structure with the
angular relations defined by the particular
crystal system.

L attice points are specified without brackets —
100, 101, 102, etc. 100 isthus a point one unit

e110 [OI;O] along the a axis, 002 is a point two units along
Fig. 1-5. Notation of lattice points, rows, and planes. the c aXiS’ and 10l isa pOI nt one unit from a
and one unit from c.

a
[100]

Lattice planes are defined in terms of the Miller indices, which are the reciprocals of the
intercepts of the planes on the coordinate axes. In Fig. 1-5, the plane shown intercepts a at
100, b at 010 and c at 002. The Miller index

of the planeisthus calculated as 1/1(a), d101

1/1(b), 1/2(c), and reduced to integers as
2a,2b,1c. Miller indices are by convention
given in parentheses, i.e, (221). If the
calculations result in indices with a common
factor (i.e., (442)) theindex is reduced to the
simplest set of integers (221). This means that
aMiller index refersto afamily of parallel
lattice planes defined by afixed trandation
distance (defined as d) in adirection
perpendicular to the plane. If directions are
negative along the lattice, a bar is placed over
the negative direction, i.e. (221)

Families of planes related by the symmetry of
the crystal system are enclosed in braces{ }.
Thus, in the tetragonal system {110} refersto Fig 1.7, Ioterplanar spacings

the four planes (110), (110), (1 10) and

(110). Because of the high symmetry in the cubic system, {110} refersto twelve planes. As
an exercise, write the Miller indices of all of these planes.

Spacing of L attice Planes. The perpendicular distance separating each lattice planein a
stack is denoted by the letter d. Figure 1-7 shows severa lattice planes and the associated d
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gpacings. In aand c arein the plane of the paper, and b is perpendicular to the plane of the
page. The notation shown for the d spacing and the relationship to the particular lattice plane
(i.e., dooa, dio1, dio3) With the Miller index for the particular plane shown in the subscript (but
usually without parentheses) are standard notation used in crystallography and x-ray
diffraction.

The values of d spacings in terms of the geometry of the different crystal systems are shown
in Table 1-2 below (from Nuffield, 1966). The crystal systems (discussed in the next
section) are listed in order of decreasing symmetry. The calculations are increasingly
complex as symmetry decreases. Crystal structure calculations are relatively smple for the
cubic system, and can be done with a good calculator for the tetragonal and orthorhombic
system. In actual practice, these calculations are usually done with the aid of specialized
computer programs specifically written for this purpose.

Table 1-2. Values of the Interplanar Spacing (dy,) in the Six Crystal Systems

System Ayt
> .
Cubic — (R + k* + )
La
[(h? + k2P|
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—hZ k2 12 -1
Orthorhombic o + ~ + p

_ i
;;i(hz + hk + k*) + 167] hexagonal indexing
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[ 1 (W2 + k* + P)sin® a + 2(hk + kI + Ih)(cos? o — cos a)] %
a? 1 —2cos®o + 3cos?a

Q

rhombohedral indexing

h2 12 2hlcosf ]‘vz
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Monoclinic

sin? 8
h? k? 2 2hk T

— sin? — sin? —sin? = (cos acos B — cos
—zsin’ @ + psin B+ gsin®y + pra B 7)

clini ol
e +?(c05 B cosy — cos ) + E(COS y cos o — cos fj)
¢

1 — cos?a — cos? f — cos?y + 2 cos acos ff cosy

Symmetry

In X-ray diffraction we make use of the repetition of the arrangement of atoms (or motif) ina
crystal structure. The repetition produces the diffraction pattern. If there is no repetition, as
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thereisfor truly amorphous materials, there is no diffraction pattern. Repetition of the motif
in alattice defines its symmetry.

Basicaly, a symmetry operation may be thought of as moving a shape-object in such away
that after the movement, the object appears exactly the same as it did before the movement.

An aternative way to view symmetry is as a series of replication operations on one surface of
a shape-object by which the entire object may be generated. Crystal structures are defined
based on the symmetry operations used to replicate (or create) the structure.

All symmetry operations may be defined by several basic movement operations. These are
described below:

Rotation (Symbols used: 1,2,3,4,6 for rotation with number of “repeats’ of the form during
one 360° rotation. Asan example, in 4-fold rotation, it takes four rotational movements of
the form to return to the original position, and the form isidentically repeated at each of the
four rotational stages.)

Reflection (Symbol used: m. Form is replicated by mirror reflection across a plane.)

Inversion (Symbol used: i. Form is replicated by projection of all points through a point of
inversion; this defines a center of symmetry.)

Rotation-Inversion (Symbol used: 1 for single rotation/inversion. May be combined with
rotational operations, i.e., 3 = 3-fold rotation w. inversions at each rotation.)

Trangation (A lateral movement which replicates the form along a linear axis)

In generd, rotation, reflection and inversion operations generate a variety of unique
arrangements of lattice points in three dimensions. These trandation-free symmetry
operations are called point-group elements.

Trandations are used to generate alattice from that shape structure. The tranglations include
asimple linear tranglation, a linear translation combined with mirror operation (glide plane),
or atranglation combined with arotational operation (screw axis). A large number of 3-
dimensional structures (the 230 Space Groups) are generated by these trandations acting on
the 32 point groups as discussed in the next section.

The repetitive nature of crystal structures results in the presence of stacks planar arrays of
atoms. Repeating, equidistant planar elements (d-spacings) are present in al crystals. The
measurement of these d-spacings and the variations in intensity of the diffractions caused by
them can be used to uniquely “fingerprint” the crystal studied. Thisisthe basis of x-ray
crystallography.

Classification and Crystal Structure

The repetition of the atomic-molecular motif in alattice is what defines the crystal structure.
This section begins with the five possible planar lattices, the Bravais lattices devel oped from
them in three dimensions, the point-groups derived by non-translation symmetry operations,
and the 230 possible space groups derived by trandations of the point groups. The
development is, at best, incomplete. For a more comprehensive discussion, the reader is
referred to Klein (2002) or Nuffield (1966). For a detailed and rigorous treatment, the reader
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isreferred to Donald Bloss (1971) “ Crystallography and Crystal Chemistry: An
Introduction” .

Lattices and Crystal Systems
There are five planar tranglation lattices, shown in Fig. 1-3 (from Nuffield, 1966).

b b
24 Y
a
a
a#b a#b
Y =90

Fig. 1-3. The five plane lattices.
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/
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When tranglated in three dimensions, the plane lattices define an assemblage of pointsin
space. By selection of different groups of pointsin two dimensions, and “copying” that
group in the third dimension, we can produce the fourteen space lattices shown on the
following page (Fig. 5.65 from Klein, 2002). These lattices are called the Bravais lattices
after Auguste Bravais (1811-1863) who was the first to show that they were unique. The
CD-ROM tutoria (Klein, 2002) includes an animated derivation of ten of the fourteen space
lattices from the plane lattices (Module 3 — Generation of 10 Bravais lattices).

The six crystal systems (table below) are defined by relationships between unit cell edge
lengths and the angles between those edges. The combination of centering and relationship
between the angles between lattice directions and axis length define the 14 | attice types
within the 6 crystal systems. In the primitive lattice (P) all atomsin the lattice are at the
corners. In the body centered lattices (1) thereis an additional atom at the center of the
lattice. There are two types of face centering, one in which the atoms are centered on a pair
of opposing plane lattices (C) and another in which an atom is centered on each face (F). It
isimportant to note that the choice of the planar replication unit and the direction of that
replication in three dimensions that determines the character of the lattice.

System Type Edge - Angle Relations Symmetry
Triclinic P albtlc |
alblg
Monoclinic P (b = twofold axis) albtc
C a=g=90°! b 2/m
P (c = twofold axis) atbtc
C alb=90°1 g
Orthorhombic P
C(orA,B) albtc mmm
| a=b=g=90°
F
Tetragonal P al =alc 4/mmm
| =b=g=90°
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System Type Edge - Angle Relations ~ Symmetry
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Table 5.9 from Klein, 2002 (below) presents another way of cross-referencing the
distribution of the 14 Bravais L attices among the six crystal systems that the reader might
find helpful.

TABLE 5.9 Description of Space Lattice Types and Distribution of the 14 Bravais Lattices
Among the Six Crystal Systems

Mame and Symbol Location of Monongin Nodes Muitiplicity of Cell
Primitive (P} . i 1
Side-centerad {A) Centerad on A face (100) 2
(B} Centered on B face (010 b
[C) Centered on © face (D01} 2
Face-centered {F) Centered on all faces 4
Body-centered (/) An extra lattice point at center of cell 2
BEnombohedral (/) A primitive rhombohedral cell 1
Primitive (P in each of the 6 crystal systems 6
Body-centered {1 in monoclinic, orthorhombic, tetragonal, and isometric 4
Side-centered (A = B = ) in ofthorhambic L
Face-centered {F) in orthorhombic and isometnc 2
Rhombohedral {F) in hexagonal =1
Total = 14

Figure 1-8 (from Nuffield, 1966) below describes diagrammatically (as spherical projections)
the trandlation-free symmetry operations by which the 32 point-groups are generated from
the 14 Bravaislattices. On the diagrams small dots represent upper hemisphere projections,
open circles represent lower hemisphere projections. The upper row shows mirror operations
(m), the middle row shows 1-fold through 6-fold rotational operations (1,2,3,4,6), and the

N |
W, ‘ C/’

OIC

Fig- 1-8. The translation-free symmetry operations
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Notethat 1 and 1 represent the lowest symmetry conditions, 1-fold rotation and simple
centrosymmetry (inversion through a center), respectively; thisis the only symmetry in the
triclinic system. Itisalso noted that 2 isexactly equivalent to the mirror condition where
the mirror planeis parallel with the page surface (found in the monoclinic system).

Triclinic Manoclimc (first satting) letragonal
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Fig. 1-9.
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Fhe 32 point groups (after International Tables for X-ray Crystallography, 1,
Kynoch Press, Birmingham (1952)].
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Trigonal Hexagonal

g L /
R i

mim

Fig. 19 {Continued).

Table 5.5 from Klein (2002) on the following page summarizes (and explains) the crysta
classes as defined by their symmetry elements, including the standardized Herrmann-
Mauguin notation used in crystallographic notation. Some notation conventions:

numbers indicate rotations (2-fold, 4-fold, etc.)

multiple numbers indicate multiple rotations (usually paralel with axes; in higher
symmetry systems rotations are around other symmetry directions)

m indicates a mirror planes (multiple m = multiple mirror planes)

/m following a number indicates rotation perpendicular to a mirror plane

A bar over a number indicates a rotoinversion

P (primitive), F (face centered), | (body centered), R (rhombohedral primitive), and
side centered (A,B, or C) lattice types used with Space Group notation (Table 5.10)
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TABLE 5.5 Characteristic Symmetry, and Relationships Between Crystal Axes and Symmetry Notation of Crystal Systems

Crystal Class System Characteristic Symmetry Hermann-Mauguin MNotation

1.1 Triclinic onafald (inversion o identity) Because of bow syrmmetry, no crystallographic
symmetry only constraints,

2 m, 2m Manoclinic one twofold rotation axis The twofold axis is taken as the & axis, and the
andiar mirror mirros (the #-¢ plane) is vertical {second setting).

222, mm2 | Gitiironiic three mutually perpendicilar The symbale refer to the symmatry elements in tha

2im2imaim | z o i directions about which order &, b, o twofold axes coincide with the
there is binary symmetry crystallographic azes.

. {2 or m)
4.4, 4/m one fourfold axis The fourfold axis refers to the o axis; the sacond

422, i, r Tatragonal symbaol {if present) refers to 1r:-.> axial directions
| (&, and a,); the third symbol (if prasent) 10
directions at 45° to &y and 2

42m, dim2imEim

g, &, &/m one sixfold axis The first number refers to the o axs; the second and
622, 6amm third symbals (F present) refer respactively 1o
Gma, &im2im2im Hexaganal® gymmetry elemants paraliel to and perpendicular
3,3, 32, one threefold axis to the crystallographic axes a;, &, and 4.,
3m, 32/m |
23, 2w, | fiour thresfold axes each The first number refers to the three crystallographic
432, 43m, |sometric inclimed at 54°44° to the awas a,, &, and as; the second number refers
Alm32im crystallographec axes to four diagonal directions of 3-fold symmetry

’ (see Fig. 5.15) {between corners of a cubel; the third numbsar

or symbol {if present] refers to six directions
betwsen the edges of a cube,

The accepled cremtation af the symmetry elements in two crystal classes af the hexagenal system s Not sire ghithorward. These are G2 and 3m. The
e ztoan of the six- af threefold aos iz unambigueus. Howeser, 1he location of {he nest symmetry alement is not abweois. In B2, the third entry (twatokd
rstatian anes] coincides with the perpendiculars to &, #. and a; the m's are coincident with these same directions. In 3mthe m's are located in directrons

erpendicular to @, &. and @,

Translation Operations

Direct trandation is clearly enables the point group symmetry elementsto replicate into a
macroscopic crystalline structure. Without a rotational component, translation is not capable
of adding unique symmetry to the structure and thus does not effect the variations which
produce the Space Groups. Trandational symmetry operations acting on the Bravais lattices
and point groups produce the 230 Space Groups (see Table 5.10 from Klein, 2002 for all the
space group symbols and the associated crystal classes). The trandational symmetry
operations are:

Screw-axis. rotation about an axis combined with trandlation parallel to the axis. Screw axes
are restricted by the trandational periodicity of the crystals to repetitions at angular intervals
of 180, 120, 90, and 60°, defining 2-fold, 3-fold, 4-fold and 6-fold axes, respectively. The
subscript notation indicates the fraction of the total translation distance covered by one screw
operation, i.e. 4, indicates 4-fold screw operation with ¥4 the trandation increment. 4
indicates 4-fold screw operation of a motif pair with %2 the translation increment.

Glide Plane: reflection across a plane combined with trandlation paralel to the plane. Glides
are expressed as a/2, b/2, or ¢/2 (increment x %2) when the glide is paralel to a
crystallographic axis and the motif is repeated twice during in one translation increment. |If
the denominator is 4 (x ¥4), the motif repeats 4 times during the increment. Diagonal glides
occur bisecting axis directions. Types are the diagonal (n) when the repeat increment is 2 or
diamond (d) when the repeat increment is 4.

We will use Klein’s (2002) CD-ROM tutorial material to demonstrate screw-axis and glide
plane operationsin class.
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TABLE 5.10 The 230 Space Groups, and the Isogonal 32 Crystal Classes (Point Groups).
The Space Group Symbals Are, in General, Unabbreviated*

Crystal Class Space Group

1 Fl

[ Pl

2 P2, P2, C2

m Pm, Fe, Cm, Ce

2im F2fm. P2,/m, C2/m, P2c, P2,/c, C2lc

222 FRa2, P222,, F2,2\2, F2,2,2,, 0222, 222, F222, 1222, 12,2,2,

e Pmm2, Pmc2;, Pec2, Pmag, Pea2;, Pnc2, Pmn2,, Pba2, Pna2,, Prn2, Cmm2,
Cmec2,, Coc2, Amm2, Abm2, Ama2, Abs2, Fmmc, Fdd2, Imm2, Ibs2, Ima2

2im2imaim F2im2im2im, P2{n2in2in, Paic2ic2im, F2ib2la2in, F2,im2im2/a,

P2ln2 in2la, P2im2in2 /e, P2 c2ic2la, F2,/b2/a2im, F2/c2,/c2in,
FP2ib2 lc2 im, P2\/n2,in2im, P2,/m2,im2in, P2,/b2ic2\fn,
P28 fc2 fa, p2\fn2im2 fa, Caimaicgim, Caimdic2fa,
C2fm2im2im, C2lc2fe2im, C2Im2im2la, C2le2ic2ia, F2Im2im2im,
FRld2iddid, 2im2im2im, 2ib2iazim, I2762/c2fa, 12Iim2im2ia

4 P4, P4, PAs, P, 1, M,

4 Pd, [

afim Pdim, Pdiim, Pdin, Pauin, Mim, M/a

422 PAZZ, PA2 2, PA,22, P42\ 2, PA.22, PA2\2, P42, PA.22, 1422, 14,22

4mm Pdmm, Plbm, Pd.cm, Pdnm, Pdec, Plne, Plome, Pd.be, [Mmm, Mcm, 14, md,
14 cd

dzm PAZm, PA2c, PA2\m, PA2.c, PAm2, PAc2, PAL2, PAN2, [Am2, [Bc2, 142m,
42d

4im2im2im Pdim2im2im, PAlm2ic2ic, PAIn2/b2im, PAIn2in2lc, PAdim2,/b2/m,

Pdim2yingic, PAfng imaim, Paing fc2lc, Pdymeimafc, Pdfmaicalm,
PA./n21020¢, PA.In2in2im, PaJm2,/b2)c. PAim2 in2im,
P2 m2ic, PAuing, (c2im, I0im2im2im, dim2icaim, |4 /a2im2id,

i, fa2ic2id
3 F3, P34, P35 R3
3 F3, R3
3z F31z, F321, F3,12, F3,21, F3.12, F3.21, R32
Im Faml, P31m, F3cl, P2le, Rim, Ric
32im P31m, F3lc, F3ml, F3cl, R3m, R3c
B PB, P6,, Pb:, P6,, PGy, P,
B FE
B/m Paim, Paim
622 FB22, P5,22, PB22, PB.22, PB22, PB,22
Gmm Fomm, Poce, Poyom, Peyme
&m2 PEm2, PBc2, P62m, Pe2c
Bim2imzim Polm2im2im, Peim2icdic, Phmilcdim, Po./m2im2ic
23 P23, F23, /23, P2,3, 12,3
2im3 P2im3, P2in3, F2im3, F2id3, RIm3, P2,/43, 12,/a3
432 P432, PA,32, FA32, F4,32, M32, P4,32, P4,32, 4,32
43m Pa3m, FA3m, M3m, P43n, F43c, 143d
dim32im Patm32im, Pain32/n, Pa,fm32/n, Pdyin32im, Faim32im, FAim32/c,

FA,/d32!m, F4,/d32/c, AIm32im, I4,/a32/d

*From International Tables for Crystaliography, 1983, v. A, T. Hahn, ed: Space Group Symmetry. International Linion
of Crystallography, Reidel Publ, Co., Boston, USA.
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