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Introduction 
Crystallography originated as the science of the study of crystal forms.  With the advent of 
the x-ray diffraction, the science has become primarily concerned with the study of atomic 
arrangements in crystalline materials.  The term crystal has been traditionally defined in 
terms of the structure and symmetry of macroscopic minerals.  With the ability to study 
material structure microscopically with X-ray diffraction, the definition of a crystal has 
become that of Buerger (1956): “a region of matter within which the atoms are arranged in a 
three-dimensional translationally periodic pattern.”  This orderly arrangement in a crystalline 
material is known as the crystal structure.  Much of x-ray diffraction is concerned with 
discovering and describing that structure.   

There is no way around it – effective application of x-ray diffraction as an analytical tool in 
geology and materials science necessitates an understanding of basic crystallography.  The 
purpose of this section is to provide that background.  The material here is anything but 
comprehensive.  Crystallography is taught as a significant part of most Mineralogy courses, 
and multi-course sequences in crystallography are taught in many physics, geology and 
materials science graduate programs.  What I will present here is skeletal treatment hopefully 
substantial enough to make sense of your diffraction data.  Students are encouraged to utilize 
the online resources available on the XRD Resource Page 
(http://epswww.unm.edu/xrd/resources.htm) to learn more.  

The aspects of crystallography most important to the effective interpretation of XRD data 
are:  

• conventions of lattice description, unit cells, lattice planes, d-spacing and Miller 
indices, 

• crystal structure and symmetry elements,  

• the reciprocal lattice (covered in a separate document) 

How all of this is used in your x-ray diffraction work will be discussed over the course next 
few weeks.  Details of crystal chemistry, atomic and molecular bonds, and descriptive 
crystallography will not be discussed, although they are all important in advanced XRD 
studies, particularly in structure refinements, and other advanced topics.  In class we will use 
the animations on the CD-ROM tutorial from Klein (2002) to illustrate these concepts.  This 
program will be available on our department network so it can be used by the class for self-
study from the student workstations in our computer lab (Northrop Hall Rm. 209).  I have 
borrowed freely from several sources to assemble this material, including Nuffield (1966), 
Klein (2002), and Jenkins and Snyder (1996).    

Description of the Crystal Structure 
A crystal structure is like a three-dimensional wallpaper design in that it is an endless 
repetition of some motif (i.e., a group of atoms or molecules).  The process of creating the 
motif involves point-group operations that define it.  The process of creating the wallpaper 
involves translation (with or without rotation or reflection) to create the complete structure 
(which we call the lattice).  Real-world crystalline structures may be simple lattice structures, 
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or combinations of lattices to make complex crystalline molecules.  As long as the structure 
is repetitive, its structure may be discovered with the application of x-ray diffraction. 

Lattice Notation 
Klein (2002) defines a lattice as “an imaginary pattern of points (or nodes) in which every 
point (node) has an environment that is identical to that of any other point (node) in the 
pattern.  A lattice has no specific origin, as it can be shifted parallel to itself.”   

The figure at left (Fig 1-5) shows method of 
notating lattice points, rows, and planes on the 
basis of the crystal coordinate systems.  A 
point in the lattice is chosen at the origin and 
defined as 000.  The a, b and c axes define the 
directions within the crystal structure with the 
angular relations defined by the particular 
crystal system.   

Lattice points are specified without brackets – 
100, 101, 102, etc.  100 is thus a point one unit 
along the a axis, 002 is a point two units along 
the c axis, and 101 is a point one unit from a 
and one unit from c.   

Lattice planes are defined in terms of the Miller indices, which are the reciprocals of the 
intercepts of the planes on the coordinate axes.  In Fig. 1-5, the plane shown intercepts a at 
100, b at 010 and c at 002.  The Miller index 
of the plane is thus calculated as 1/1(a), 
1/1(b), 1/2(c), and reduced to integers as 
2a,2b,1c.  Miller indices are by convention 
given in parentheses, i.e., (221).  If the 
calculations result in indices with a common 
factor (i.e., (442)) the index is reduced to the 
simplest set of integers (221).  This means that 
a Miller index refers to a family of parallel 
lattice planes defined by a fixed translation 
distance (defined as d) in a direction 
perpendicular to the plane.  If directions are 
negative along the lattice, a bar is placed over 
the negative direction, i.e. (2 2 1) 

Families of planes related by the symmetry of 
the crystal system are enclosed in braces { }.  
Thus, in the tetragonal system {110} refers to 
the four planes (110), ( 1 10), ( 1 1 0) and 
(1 1 0).  Because of the high symmetry in the cubic system, {110} refers to twelve planes.  As 
an exercise, write the Miller indices of all of these planes.   

Spacing of Lattice Planes: The perpendicular distance separating each lattice plane in a 
stack is denoted by the letter d.  Figure 1-7 shows several lattice planes and the associated d 
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spacings.  In a and c are in the plane of the paper, and b is perpendicular to the plane of the 
page.  The notation shown for the d spacing and the relationship to the particular lattice plane 
(i.e., d001, d101, d103) with the Miller index for the particular plane shown in the subscript (but 
usually without parentheses) are standard notation used in crystallography and x-ray 
diffraction.   

The values of d spacings in terms of the geometry of the different crystal systems are shown 
in Table 1-2 below (from Nuffield, 1966).  The crystal systems (discussed in the next 
section) are listed in order of decreasing symmetry.  The calculations are increasingly 
complex as symmetry decreases.  Crystal structure calculations are relatively simple for the 
cubic system, and can be done with a good calculator for the tetragonal and orthorhombic 
system.  In actual practice, these calculations are usually done with the aid of specialized 
computer programs specifically written for this purpose.   

 

 
 

Symmetry 
In X-ray diffraction we make use of the repetition of the arrangement of atoms (or motif) in a 
crystal structure.  The repetition produces the diffraction pattern.  If there is no repetition, as 
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there is for truly amorphous materials, there is no diffraction pattern.  Repetition of the motif 
in a lattice defines its symmetry.   

Basically, a symmetry operation may be thought of as moving a shape-object in such a way 
that after the movement, the object appears exactly the same as it did before the movement.   

An alternative way to view symmetry is as a series of replication operations on one surface of 
a shape-object by which the entire object may be generated.  Crystal structures are defined 
based on the symmetry operations used to replicate (or create) the structure. 

All symmetry operations may be defined by several basic movement operations.  These are 
described below:  

Rotation (Symbols used: 1,2,3,4,6 for rotation with number of “repeats” of the form during 
one 360° rotation.  As an example, in 4-fold rotation, it takes four rotational movements of 
the form to return to the original position, and the form is identically repeated at each of the 
four rotational stages.) 

Reflection (Symbol used: m. Form is replicated by mirror reflection across a plane.) 

Inversion (Symbol used: i. Form is replicated by projection of all points through a point of 
inversion; this defines a center of symmetry.) 

Rotation-Inversion (Symbol used: 1  for single rotation/inversion.  May be combined with 
rotational operations, i.e., 3  = 3-fold rotation w. inversions at each rotation.) 

Translation (A lateral movement which replicates the form along a linear axis) 

In general, rotation, reflection and inversion operations generate a variety of unique 
arrangements of lattice points in three dimensions.  These translation-free symmetry 
operations are called point-group elements.    

Translations are used to generate a lattice from that shape structure.  The translations include 
a simple linear translation, a linear translation combined with mirror operation (glide plane), 
or a translation combined with a rotational operation (screw axis).  A large number of 3-
dimensional structures (the 230 Space Groups) are generated by these translations acting on 
the 32 point groups as discussed in the next section.   

The repetitive nature of crystal structures results in the presence of stacks planar arrays of 
atoms. Repeating, equidistant planar elements (d-spacings) are present in all crystals.  The 
measurement of these d-spacings and the variations in intensity of the diffractions caused by 
them can be used to uniquely “fingerprint” the crystal studied.  This is the basis of x-ray 
crystallography.   

Classification and Crystal Structure 
The repetition of the atomic-molecular motif in a lattice is what defines the crystal structure.  
This section begins with the five possible planar lattices, the Bravais lattices developed from 
them in three dimensions, the point-groups derived by non-translation symmetry operations, 
and the 230 possible space groups derived by translations of the point groups.  The 
development is, at best, incomplete.  For a more comprehensive discussion, the reader is 
referred to Klein (2002) or Nuffield (1966).  For a detailed and rigorous treatment, the reader 
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is referred to Donald Bloss (1971) “Crystallography and Crystal Chemistry: An 
Introduction”.   

Lattices and Crystal Systems 
There are five planar translation lattices, shown in Fig. 1-3 (from Nuffield, 1966). 

 
When translated in three dimensions, the plane lattices define an assemblage of points in 
space.  By selection of different groups of points in two dimensions, and “copying” that 
group in the third dimension, we can produce the fourteen space lattices shown on the 
following page (Fig. 5.65 from Klein, 2002).  These lattices are called the Bravais lattices 
after Auguste Bravais (1811-1863) who was the first to show that they were unique.  The 
CD-ROM tutorial (Klein, 2002) includes an animated derivation of ten of the fourteen space 
lattices from the plane lattices (Module 3 – Generation of 10 Bravais lattices).   

The six crystal systems (table below) are defined by relationships between unit cell edge 
lengths and the angles between those edges.  The combination of centering and relationship 
between the angles between lattice directions and axis length define the 14 lattice types 
within the 6 crystal systems.  In the primitive lattice (P) all atoms in the lattice are at the 
corners.  In the body centered lattices (I) there is an additional atom at the center of the 
lattice.  There are two types of face centering, one in which the atoms are centered on a pair 
of opposing plane lattices (C) and another in which an atom is centered on each face (F).  It 
is important to note that the choice of the planar replication unit and the direction of that 
replication in three dimensions that determines the character of the lattice.   
 

System Type Edge - Angle Relations Symmetry 
Triclinic P a ≠ b ≠ c  

α ≠ β ≠ γ 
I 

Monoclinic P (b = twofold axis) 
C  

a ≠ b ≠ c  
α = γ = 90° ≠ β 

 
2/m 

 P (c = twofold axis) 
C 

a ≠ b ≠ c  
α ≠ β = 90° ≠ γ 

 

Orthorhombic P 
C (or A, B) 
I 
F 

 
a ≠ b ≠ c  
α = β = γ = 90° 

 
mmm 

Tetragonal P 
I 

a1 = a2 ≠ c  
α = β = γ = 90° 

4/mmm 
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System Type Edge - Angle Relations Symmetry 
Hexagonal R 

P 
a1 = a2 ≠ c  
α = β = 90°, γ = 120° 

3 m 
6/mmm 

Cubic P 
I 
F 

a1 = a2  = a3  
α = β = γ = 90° 

 
m3m 
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Table 5.9 from Klein, 2002 (below) presents another way of cross-referencing the 
distribution of the 14 Bravais Lattices among the six crystal systems that the reader might 
find helpful.  

 

 
Figure 1-8 (from Nuffield, 1966) below describes diagrammatically (as spherical projections) 
the translation-free symmetry operations by which the 32 point-groups are generated from 
the 14 Bravais lattices.  On the diagrams small dots represent upper hemisphere projections, 
open circles represent lower hemisphere projections.  The upper row shows mirror operations 
(m), the middle row shows 1-fold through 6-fold rotational operations (1,2,3,4,6), and the 
bottom row shows rotation-inversion operations ( 64321 ,,,, ).   



Elementary Crystallography for X-Ray Diffraction 

(Revision date: 11-Feb-03)  Page 8 of 11 

Note that 1 and 1  represent the lowest symmetry conditions, 1-fold rotation and simple 
centrosymmetry (inversion through a center), respectively; this is the only symmetry in the 
triclinic system.  It is also noted that 2  is exactly equivalent to the mirror condition where 
the mirror plane is parallel with the page surface (found in the monoclinic system).   
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Table 5.5 from Klein (2002) on the following page summarizes (and explains) the crystal 
classes as defined by their symmetry elements, including the standardized Herrmann-
Mauguin notation used in crystallographic notation.   Some notation conventions: 

• numbers indicate rotations (2-fold, 4-fold, etc.) 
• multiple numbers indicate multiple rotations (usually parallel with axes; in higher 

symmetry systems rotations are around other symmetry directions) 
• m indicates a mirror planes (multiple m = multiple mirror planes) 
• /m following a number indicates rotation perpendicular to a mirror plane 
• A bar over a number indicates a rotoinversion  
• P (primitive), F (face centered), I (body centered), R (rhombohedral primitive), and 

side centered (A,B, or C) lattice types used with Space Group notation (Table 5.10) 
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Translation Operations 
Direct translation is clearly enables the point group symmetry elements to replicate into a 
macroscopic crystalline structure.  Without a rotational component, translation is not capable 
of adding unique symmetry to the structure and thus does not effect the variations which 
produce the Space Groups.  Translational symmetry operations acting on the Bravais lattices 
and point groups produce the 230 Space Groups (see Table 5.10 from Klein, 2002 for all the 
space group symbols and the associated crystal classes).  The translational symmetry 
operations are:  

Screw-axis: rotation about an axis combined with translation parallel to the axis.  Screw axes 
are restricted by the translational periodicity of the crystals to repetitions at angular intervals 
of 180, 120, 90, and 60°, defining 2-fold, 3-fold, 4-fold and 6-fold axes, respectively.  The 
subscript notation indicates the fraction of the total translation distance covered by one screw 
operation, i.e. 41 indicates 4-fold screw operation with ¼ the translation increment.   42 
indicates 4-fold screw operation of a motif pair with ½ the translation increment.   

Glide Plane: reflection across a plane combined with translation parallel to the plane.  Glides 
are expressed as a/2, b/2, or c/2 (increment x ½) when the glide is parallel to a 
crystallographic axis and the motif is repeated twice during in one translation increment.  If 
the denominator is 4 (x ¼), the motif repeats 4 times during the increment.  Diagonal glides 
occur bisecting axis directions.  Types are the diagonal (n) when the repeat increment is 2 or 
diamond (d) when the repeat increment is 4.   

We will use Klein’s (2002) CD-ROM tutorial material to demonstrate screw-axis and glide 
plane operations in class.   
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