Section 10.2

Theorem: If a smooth curve C is given parametrically by $x=f(t), y=g(t)$, then the slope $d y / d x$ of the tangent line to C at $P(x, y)$ is $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$, provided $\frac{d x}{d t} \neq 0$.
Exercise 1. Let C be the curve with parametrization

$$
x=2 t, y=t^{2}-1 ; \quad-1 \leq t \leq 2
$$

Find the slopes of the tangent line and normal line to C at $P(x, y)$.
Exercise 2. Let C be the curve with parametrization

$$
x=t^{3}-3 t, y=t^{2}-5 t-1 ;-\infty<t<\infty
$$

(a) Find an equation of the tangent line to C at the point corresponding to $t=2$.
(b) For what values of t is the tangent line horizontal or vertical?

Class Exercise 1. Find $d y / d x$ if $x=1 / t$ and $y=\sqrt{t} e^{-t}$.
Class Exercise 2. Find an equation of the tangent to the curve at the point corresponding to the given value of the parameter.
(a) $x=t-t^{-1}, y=1+t^{2} ; t=1$
(b) $x=\sin ^{3} \theta, y=\cos ^{3} \theta ; \theta=\pi / 6$

If a curve C is parametrized by $x=f(t), y=g(t)$, and if y^{\prime} is a differentiable function of t, we can find $d^{2} y / d x^{2}$ by applying the above theorem to y^{\prime} as follows.

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(y^{\prime}\right)=\frac{d y^{\prime} / d t}{d x / d t}
$$

It is important to observe that $\frac{d^{2} y}{d x^{2}} \neq \frac{d^{2} y / d t^{2}}{d^{2} x / d t^{2}}$.
Exercise 3. Let C be the curve with parametrization

$$
x=e^{-t}, y=e^{2 t},-\infty<t<\infty
$$

(a) Sketch the graph of C and indicate the orientation.
(b) Use the above theorems to find $d y / d x$ and $d^{2} y / d x^{2}$.
(c) Find a function k that has the same graph as C, and use $k^{\prime}(x)$ and $k^{\prime \prime}(x)$ to check the answers.
(d) Discuss the concavity of C.

Class Exercise 3. Find (a) $d y / d x$ and (b) $d^{2} y / d x^{2}$ in terms of t.
(i) $x=\cos t, y=\sqrt{3} \cos t$
(ii) $x=1 / t$ and $y=-2+\ln t$
(iii) $x=t^{2}+t, y=t^{2}-t$

Theorem: If a smooth curve C is given parametrically by $x=f(t), y=g(t), a \leq t \leq b$, and if C does not intersect itself, except possibly for $t=a$ and $t=b$, then the length L of C is

$$
L=\int_{a}^{b} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Exercise 4. Find the length of one arch of the cycloid that has the parametrization

$$
x=t-\sin t, y=1-\cos t ;-\infty<t<\infty
$$

Class Exercise 4. Find the length of the curve.
(a) $x=\cos t, y=t+\sin t, 0 \leq t \leq \pi$
(b) $x=\frac{(2 t+3)^{3 / 2}}{3}, y=t+\frac{t^{2}}{2}, 0 \leq t \leq 3$
(c) $x=\frac{1}{3} t^{3}, y=\frac{1}{2} t^{2}, 0 \leq t \leq 1 \quad$ (d) $x=8 \cos t+8 t \sin t, y=8 \sin t-8 t \cos t, 0 \leq t \leq \pi / 2$
(e) $x=\ln (\sec t+\tan t)-\sin t, y=\cos t, 0 \leq t \leq \pi / 3 \quad$ (f) $x=e^{t}-t^{2}, y=t+e^{-t},-1 \leq t \leq 2$

Surface Area Formula: If the curve given by the parametric equations $x=f(t), y=g(t), \alpha \leq$ $t \leq \beta$, is rotated about the x-axis, where f, g^{\prime} are continuous and $g(t) \geq 0$, then the area of the resulting surface is given by $S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$.
Exercise 5. Verify that the surface area of a sphere of radius a is $4 \pi a^{2}$.
Class Exercise 5. Find the area of the surface generated by revolving the curve about the indicated axis. (a) $x=\cos t, y=2+\sin t, 0 \leq t \leq 2 \pi ; x$-axis
(b) $x=(2 / 3) t^{3 / 2}, y=2 \sqrt{t}, 0 \leq t \leq 2 ; y$-axis
(c) $x=t+1, y=t^{2}+2,0 \leq t \leq 3 ; y$-axis
(d) $x=\ln (\sec t+\tan t)-\sin t, y=\cos t, 0 \leq t \leq \pi / 3 ; x$-axis

Homework: 3-23 (every 4th), 31, 33, 45, 49, 67-73 ODD

