Section 10.3

In a rectangular coordinate system, the ordered pair (a, b) denotes the point whose directed distances from the $x-$ and y-axes are b and a, respectively. Another method for representing points is to use polar coordinates.

To define polar coordinates, we first fix an origin O (call the pole) and an initial ray from O. Usually the positive x-axis is chosen as the initial ray. Then the point P can be located by assigning to it a polar coordinate pair (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to ray $O P$. So we label the point P as $P(r, \theta)$.

Exercise 1. Find all the polar coordinates of the point $P(2, \pi / 6)$.

Exercise 2. Plot the points with the given polar coordinates.
(a) $(-3,5 \pi / 6)$
(b) $\left(5, \tan ^{-1}(4 / 3)\right)$
(c) $(-1,7 \pi)$
(d) $(2 \sqrt{3}, 2 \pi / 3)$

Class Exercise 1. Plot the point whose polar coordinates are given.
(a) $(-\sqrt{2}, 5 \pi / 4)$
(b) $(1,5 \pi / 2)$
(c) $(2,-7 \pi / 6)$

Exercise 3. Sketch the graph of the following polar equations:
(a) $r=4 \sin \theta$
(b) $r=2+2 \cos \theta$
(c) $r=2+4 \cos \theta$
(d) $r=a \sin \theta$

Class Exercise 2. Graph the polar curve. (a) $r=1+\cos \theta$
(b) $r=2-2 \cos \theta$
(c) $r^{2}=-\sin 2 \theta$
(d) $r=1-\sin \theta$
(e) $r=1-2 \sin 3 \theta$
(f) $r=\sin (\theta / 2)$
(g) $r=\theta$
(h) $r=1+\sin \theta$
(i) $r=2 \cos 3 \theta$
(j) $r=1+2 \sin \theta$

Relationship between rectangular and polar coordinates: The rectangular coordinates (x, y) and polar coordinates (r, θ) of a point P are related as follows:
(i) $x=r \cos \theta, y=r \sin \theta$
(ii) $r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$ if $x \neq 0$

Exercise 4. Find the Cartesian coordinates for the following points that are given in polar coordinates:
(a) $(\sqrt{2}, \pi / 4)$
(b) $(1,0)$
(c) $(0, \pi / 2)$
(d) $(-\sqrt{2}, \pi / 4)$

Class Exercise 3. Find the Cartesian coordinates for the following points that are given in polar coordinates:
(a) $(-3,5 \pi / 6)$
(b) $\left(5, \tan ^{-1}(4 / 3)\right)$
(c) $(-1,7 \pi)$
(d) $(2 \sqrt{3}, 2 \pi / 3)$

Exercise 5. Find an equation in x and y that has the same graph as the polar equation $r=a$ sin θ, with $a \neq 0$. Sketch the graph.

Exercise 6. Replace the following polar equations by equivalent Cartesian equations and identify their graphs.
(a) $r \cos \theta=-4$
(b) $r^{2}=4 r \cos \theta$
(c) $r=\frac{4}{2 \cos \theta-\sin \theta}$

Class Exercise 4. Replace the polar equation by an equivalent Cartesian equation. Then identify or describe the graph.
(a) $r \sin \theta=0$
(b) $r \cos \theta=0$
(c) $r=4 \csc \theta$
(d) $r=-3 \sec \theta \quad$ (e) $r \cos \theta+r \sin \theta=1$
(f) $r^{2}=1$
(g) $r^{2}=4 r \sin \theta$
(h) $r=\frac{5}{\sin \theta-2 \cos \theta}$
(i) $r^{2} \sin 2 \theta=2$
(j) $r=\cot \theta \csc \theta$

Homework: 1-25 (every 4th), 33-49 (every 4th)

