Section 10.3

In a rectangular coordinate system, the ordered pair (a, b) denotes the point whose directed distances from the x- and y-axes are b and a, respectively. Another method for representing points is to use *polar coordinates*.

To define polar coordinates, we first fix an origin O (call the **pole**) and an **initial ray** from O. Usually the positive x-axis is chosen as the initial ray. Then the point P can be located by assigning to it a **polar coordinate pair** (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to ray OP. So we label the point P as $P(r, \theta)$.

Exercise 1. Find all the polar coordinates of the point $P(2, \pi/6)$.

Exercise 2. Plot the points with the given polar coordinates. (a) $(-3, 5\pi/6)$ (b) $(5, \tan^{-1}(4/3))$ (c) $(-1, 7\pi)$ (d) $(2\sqrt{3}, 2\pi/3)$

Class Exercise 1. Plot the point whose polar coordinates are given. (a) $(-\sqrt{2}, 5\pi/4)$ (b) $(1, 5\pi/2)$ (c) $(2, -7\pi/6)$

Exercise 3. Sketch the graph of the following polar equations: (a) $r = 4 \sin \theta$ (b) $r = 2 + 2 \cos \theta$ (c) $r = 2 + 4 \cos \theta$ (d) $r = a \sin \theta$

Class Exercise 2. Graph the polar curve. (a) $r = 1 + \cos \theta$ (b) $r = 2 - 2 \cos \theta$ (c) $r^2 = -\sin 2\theta$ (d) $r = 1 - \sin \theta$ (e) $r = 1 - 2 \sin 3\theta$ (f) $r = \sin(\theta/2)$ (g) $r = \theta$ (h) $r = 1 + \sin \theta$ (i) $r = 2 \cos 3\theta$ (j) $r = 1 + 2 \sin \theta$

Relationship between rectangular and polar coordinates: The rectangular coordinates (x, y) and polar coordinates (r, θ) of a point P are related as follows: (i) $x = r \cos \theta$, $y = r \sin \theta$

(ii) $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{r}$ if $x \neq 0$

Exercise 4. Find the Cartesian coordinates for the following points that are given in polar coordinates:

(a) $(\sqrt{2}, \pi/4)$ (b) (1, 0) (c) $(0, \pi/2)$ (d) $(-\sqrt{2}, \pi/4)$

Class Exercise 3. Find the Cartesian coordinates for the following points that are given in polar coordinates:

(a) $(-3, 5\pi/6)$ (b) $(5, \tan^{-1}(4/3))$ (c) $(-1, 7\pi)$ (d) $(2\sqrt{3}, 2\pi/3)$

Exercise 5. Find an equation in x and y that has the same graph as the polar equation $r = a \sin \theta$, with $a \neq 0$. Sketch the graph.

Exercise 6. Replace the following polar equations by equivalent Cartesian equations and identify their graphs.

(a) $r \cos \theta = -4$ (b) $r^2 = 4r \cos \theta$ (c) $r = \frac{4}{2\cos\theta - \sin\theta}$

Class Exercise 4. Replace the polar equation by an equivalent Cartesian equation. Then identify or describe the graph.

(a) $r \sin \theta = 0$ (b) $r \cos \theta = 0$ (c) $r = 4 \csc \theta$ (d) $r = -3 \sec \theta$ (e) $r \cos \theta + r \sin \theta = 1$ (f) $r^2 = 1$ (g) $r^2 = 4r \sin \theta$ (h) $r = \frac{5}{\sin \theta - 2\cos \theta}$ (i) $r^2 \sin 2\theta = 2$ (j) $r = \cot \theta \csc \theta$

Homework: 1-25 (every 4th), 33-49 (every 4th)