Section 10.4

<u>Theorem</u>: If f is continuous and $f(\theta) \ge 0$ on $[\alpha, \beta]$, where $0 \le \alpha < \beta \le 2\pi$, then the area A of the region bounded by the graphs of $r = f(\theta)$, $\theta = \alpha$, and $\theta = \beta$ is

$$A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 d\theta = \int_{\alpha}^{\beta} \frac{1}{2} r^2 d\theta.$$

Exercise 1. Find the area of the region bounded by the cardioid $r = 2 + 2 \cos \theta$.

Exercise 2. Find the area A of the region R that is inside the cardioid $r = 2 + 2 \cos \theta$ and outside the region r = 3.

Class Exercise 1. Find the area of the region.

- (a) inside the oval limacon $r = 4 + 2 \cos \theta$
- (b) inside the cardioid $r = a(1+\cos \theta), a > 0$
- (c) inside the lemniscate $r^2 = 2a^2 \cos 2\theta$, a > 0
- (d) inside one leaf of the four-leaved rose $r = \cos 2\theta$
- (e) inside one loop of the lemniscate $r^2 = 4 \sin 2\theta$
- (f) inside the six-leaved rose $r^2 = 2 \sin 3\theta$
- (g) shared by the circles $r = 2 \cos \theta$ and $r = 2 \sin \theta$

(h) shared by the circles r = 1 and $r = 2 \sin \theta$

Length of a Polar Curve: If $r = f(\theta)$ has a continuous first derivative for $\alpha \leq \theta \leq \beta$ and if the point $P(r, \theta)$ traces the curve $r = f(\theta)$ exactly once as θ runs from α to β , then the length of the curve is

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \ d\theta.$$

Exercise 3. Find the length of the cardioid $r = 1 - \cos \theta$.

Class Exercise 2. Find the length of the curve.

(a) the spiral $r = \theta^2$, $0 \le \theta \le \sqrt{5}$. (b) the spiral $r = e^{\theta}/\sqrt{2}$, $0 \le \theta \le 2\pi$. (c) the cardioid $r = 1 + \cos \theta$ (d) the curve $r = a \sin^2(\theta/2)$, $0 \le \theta \le \pi$, a > 0(e) the parabolic segment $r = 6/(1+\cos \theta)$, $0 \le \theta \le \pi/2$ (f) the parabolic segment $r = 2/(1-\cos \theta)$, $\pi/2 \le \theta \le \pi$ (g) the curve $r = \cos^3(\theta/3)$, $0 \le \theta \le \pi/4$ (h) the curve $r = \sqrt{1+\sin 2\theta}$, $0 \le \theta \le \pi\sqrt{2}$

Tests for symmetry

(i) The graph of $r = f(\theta)$ is symmetric with respect to the polar axis if substitution of $-\theta$ for θ leads to an equivalent equation.

(ii) The graph of $r = f(\theta)$ is symmetric with respect to the vertical line $\theta = \pi/2$ if substitution of either (a) $\pi - \theta$ for θ or (b) -r for r and $-\theta$ for θ leads to an equivalent equation. (iii) The graph of $r = f(\theta)$ is symmetric with respect to the pole if substitution of either (a) -r

(iii) The graph of r = f(b) is symmetric with respect to the pole if substitution of either (a) -r or r or (b) $\pi + \theta$ leads to an equivalent equation.

<u>Theorem</u>: The slope m of the tangent line to the graph of $r = f(\theta)$ at the point $P(r, \theta)$ is

$$m = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Exercise 7. For the cardioid $r = 2 + 2 \cos \theta$ with $0 \le \theta \le 2\pi$, find (a) the slope of the tangent line at $\theta = \pi/6$ (b) the points at which the tangent line is horizontal (c) the points at which the tangent line is vertical

Exercise 8. Find the horizontal and vertical tangents of the cardioid $r = 1 - \cos \theta$, $0 \le \theta \le 2\pi$.

Class Exercise 3. Find the slope of the curve at each indicated point. (a) $r = \cos 2\theta$, $\theta = 0$, $\pm \pi/2$, π (b) r = 3 (1- $\cos \theta$), $\theta = \pi/3$, $2\pi/3$, π , $3\pi/2$

Class Exercise 4. Find equations for the horizontal and vertical tangent lines to the curve. (a) $r = -1 + \sin \theta$, $0 \le \theta \le 2\pi$ (b) $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$ (c) $r = 2 \sin \theta$, $0 \le \theta \le \pi$ (d) $r = 3 - 4 \cos \theta$, $0 \le \theta \le 2\pi$

Homework: 1-41 (every 4th), 49, 51, 63-71 ODD

Section 10.5

<u>Definition</u>: A **parabola** is the set of points in a plane that are equidistant from a fixed point F (called the <u>focus</u>) and a fixed line (called the <u>directrix</u>).

Equation: An equation of the parabola with focus (0, p) and directrix y = -p is

$$x^2 = 4py$$

Equation: $y^2 = 4px$ is an equation of the parabola with focus (p, 0) and directrix x = -p.

Exercise 9. Find the vertex, focus, and directrix of the $2y^2 = 5x$ and sketch its graph. (Section 10.5 #2)

Class Exercise 5. Find the vertex, focus, and directrix of the parabola $3x^2 + 8y = 0$ and sketch its graph. (Section 10.5 #4)

Class Exercise 6. Find the vertex, focus, and directrix of the parabola $(y - 2)^2 = 2x + 1$ and sketch its graph. (Section 10.5 #6)

Class Exercise 7. Find the vertex, focus, and directrix of the parabola $2x^2 - 16x - 3y + 38 = 0$ and sketch its graph. (Section 10.5 #8)

Definition: An ellipse is the set of points in a plane the sum of whose distances from two fixed points F_1 and F_2 is a constant.

Equation: The ellipse

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad a \ge b > 0$

has foci $(\pm c, 0)$, where $c^2 = a^2 - b^2$, and vertices $(\pm a, 0)$.

Equation: The ellipse

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \qquad a \ge b > 0$$

has foci $(0, \pm c)$, where $c^2 = a^2 - b^2$, and vertices $(0, \pm a)$.

Exercise 10. Find the vertices and foci of the ellipse $\frac{x^2}{36} + \frac{y^2}{8} = 1$ and sketch its graph. (Section 10.5 #12)

Class Exercise 8. Find the vertices and foci of the ellipse $100x^2 + 36y^2 = 225$ and sketch its graph. (Section 10.5 #14)

Class Exercise 9. Find the vertices and foci of the ellipse $x^2 + 3y^2 + 2x - 12y + 10 = 0$ and sketch its graph. (Section 10.5 #16)

Definition: A **hyperbola** is the set of all points in a plane the difference of whose distances from two fixed points $\overline{F_1}$ and $\overline{F_2}$ is a constant.

Equation: The hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

has foci $(\pm c, 0)$, where $c^2 = a^2 + b^2$, vertices $(\pm a, 0)$, and asymptotes $y = \pm (b/a)x$.

Equation: The hyperbola

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

has foci $(0, \pm c)$, where $c^2 = a^2 + b^2$, vertices $(0, \pm a)$ and asymptotes $y = \pm (a/b)x$.

Exercise 11. Find the vertices, foci, and asymptotes of the hyperbola

$$\frac{x^2}{36} - \frac{y^2}{64} = 1$$

and sketch its graph.

Class Exercise 10. Find the vertices, foci, and asymptotes of the hyperbola $y^2 - 16x^2 = 16$ and sketch its graph. (Section 10.5 #22)

Class Exercise 11. Find the vertices, foci, and asymptotes of the hyperbola $9y^2 - 4x^2 - 36y - 8x = 4$ and sketch its graph. (Section 10.5 #24)

Homework: 1-21 (every 4th), 27-47 (every 4th)