Section 10.6

Definition: A parabola is the set of points in a plane that are equidistant from a fixed point F (called the focus) and a fixed line (called the directrix).

Definition: A hyperbola is the set of all points in a plane the difference of whose distances from two fixed points F_{1} and F_{2} (the foci) is a constant.

Definition: An ellipse is the set of all points in a plane the sum of whose distances from two fixed points F_{1} and F_{2} is a constant.

Theorem: Let F be a fixed point and l a fixed line in a plane. The set of all points P in the plane, such that the ratio $d(P, F) / d(P, Q)$ is a positive constant e with $d(P, Q)$ the distance from P to l, is a conic section. The conic is a parabola if $e=1$, an ellipse if $0<e<1$, and a hyperbola if $e>1$.

Theorem: A polar equation that has one of the four forms

$$
r=\frac{d e}{1 \pm e \cos \theta}, r=\frac{d e}{1 \pm e \sin \theta}
$$

is a conic section. The conic is a parabola if $e=1$, an ellipse if $0<e<1$, or a hyperbola if $e>1$.
Exercise 1. Describe and sketch the graph of the polar equation $r=\frac{10}{3+2 \cos \theta}$.

Exercise 2. Describe and sketch the graph of the polar equation $r=\frac{10}{2+3 \sin \theta}$.

Class Exercise 1. (i) Find the eccentricity, (ii) identify the conic, (iii) give an equation of the directrix, and (iv) sketch the conic.
(a) $r=\frac{12}{3-10 \cos \theta}$.
(b) $r=\frac{3}{2+2 \cos \theta}$.
(c) $r=\frac{8}{4+5 \sin \theta}$.
(d) $r=\frac{10}{5-6 \sin \theta}$.

Exercise 3. Sketch the graph of the polar equation $r=\frac{15}{4-4 \cos \theta}$.
Exercise 4. Find an equation in x and y that has the same graph as the polar equation $r=$ $\frac{15}{4-4 \sin \theta}$.

Homework: 1-15 ODD, 27-33 ODD

