Section 11.1

Definition: A sequence is a function f whose domain is the set of positive integers.
Exercise 1. List the first four terms and the tenth term of each sequence:
(a) $\left\{\frac{n}{n+1}\right\}$
(b) $\left\{2+(0.1)^{n}\right\}$
(c) $\left\{(-1)^{n+1} \frac{n^{2}}{3 n-1}\right\}$
(d) $\{4\}$

For some sequences we state the first term a_{1}, together with a rule for obtaining any term a_{k+1} from the preceding term a_{k} whenever $k \geq 1$. We call this a recursive definition, and the sequence is said to be defined recursively.

Exercise 2. Find the first four terms and the nth of the sequence defined recursively as follows:

$$
a_{1}=3 \text { and } a_{k+1}=2 a_{k} \text { for } k \geq 1
$$

Class Exercise 1. List the first five terms of the sequence.
(a) $a_{n}=\frac{3^{n}}{1+2^{n}}$
(b) $a_{n}=\cos \frac{n \pi}{2}$
(c) $a_{n}=\frac{(-1)^{n} n}{n!+1}$
(d) $a_{1}=6, a_{n+1}=\frac{a_{n}}{n}$
(e) $a_{1}=2, a_{2}=1, a_{n+1}=a_{n}-a_{n-1}$

Exercise 3. Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.
(a) $\left\{1,-\frac{1}{3}, \frac{1}{9},-\frac{1}{27}, \frac{1}{81}, \ldots \ldots\right\}$

Class Exercise 2. Find a formula for the general term a_{n} of the sequence, assuming that the pattern of the first few terms continues.
(a) $\{5,8,11,14,17 \ldots \ldots\}$
(b) $\{1,0,-1,0,1,0,-1,0, \ldots$.

Definition: A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \text { or } a_{n} \rightarrow L \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large. If $\lim _{n \rightarrow \infty}$ a_{n} exists, we say the sequence converges (or is convergent). Otherwise, we say the sequence diverges (or it is divergent).

Definition: The notation

$$
\lim _{n \rightarrow \infty} a_{n}=\infty
$$

means that for every positive real number P there exists a number N such that $a_{n}>P$ whenever $n>N$.

Theorem: Let $\left\{a_{n}\right\}$ be a sequence, let $f(n)=a_{n}$, and suppose that $f(x)$ exists for every real number $x \geq 1$,
(i) If $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} f(n)=\mathrm{L}$.
(ii) If $\lim _{x \rightarrow \infty} f(x)=\infty($ or $-\infty)$, then $\lim _{n \rightarrow \infty} f(n)=\infty$ (or $-\infty$).

Exercise 4. If $a_{n}=1+\frac{1}{n}$, determine whether $\left\{a_{n}\right\}$ converges or diverges.

Exercise 5. Determine whether the sequence converges or diverges:
(a) $\left\{\frac{1}{4} n^{2}-1\right\}$ (b) $\left\{(-1)^{n-1}\right\}$.

Exercise 6. Determine whether the sequence $\left\{\frac{5 n}{e^{2 n}}\right\}$ converges or diverges.

Theorem: (i) $\lim _{n \rightarrow \infty} r^{n}=0$ if $|r|<1$
(ii) $\lim _{n \rightarrow \infty}\left|r^{n}\right|=\infty$ if $|r|>1$

Exercise 7. List the first four terms of the sequence, and determine whether the sequence converges or diverges:
(a) $\left\{\left(-\frac{2}{3}\right)^{n}\right\}$
(b) $\left\{(1.01)^{n}\right\}$

Exercise 8. Find the limit of the sequence $\left\{\frac{2 n^{2}}{5 n^{2}-3}\right\}$.
Exercise 9. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=\frac{n^{3}}{n^{3}+1}$
(b) $a_{n}=\frac{n^{3}}{n+1}$
(c) $a_{n}=\frac{3^{n+2}}{5^{n}}$
(d) $a_{n}=\sqrt{\frac{n+1}{9 n+1}}$

Theorem: Let $\left\{a_{n}\right\}$ be a sequence. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Exercise 10. Suppose the nth term of a sequence is

$$
a_{n}=(-1)^{n+1} \frac{1}{n}
$$

Prove that $\lim _{n \rightarrow \infty} a_{n}=0$.
Definition: A sequence is monotonic if successive terms are non-decreasing:

$$
a_{1} \leq a_{2} \ldots \ldots . \leq a_{n} \leq \ldots \ldots \ldots
$$

or if they are non-increasing:

$$
a_{1} \geq a_{2} \geq \ldots \ldots \ldots \geq a_{n} \geq \ldots \ldots \ldots
$$

Example: An example of a monotonic sequence is $a_{n}=\frac{1}{n}$.
Definition: A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M such that

$$
a_{n} \leq M \text { for all } n \geq 1
$$

It is bounded below if there is a number m such that

$$
m \leq a_{n} \text { for all } n \geq 1
$$

If it is bounded above and below, then $\left\{a_{n}\right\}$ is a bounded sequence.
Example: An example of a bounded sequence is $a_{n}=10-\frac{1}{n}$.
Exercise 11. Determine whether the sequence is increasing, decreasing, or monotonic. Is the sequence bounded?
(a) $a_{n}=(-2)^{n+1}$
(b) $a_{n}=\frac{2 n-3}{3 n+4}$
(c) $a_{n}=n e^{-n}$
(d) $a_{n}=n+\frac{1}{n}$

Theorem: A bounded, monotonic sequence has a limit.
Class Exercise 3. Determine whether the sequence converges or diverges. If it converges, find the limit.
(a) $a_{n}=e^{2 n /(n+2)}$
(b) $a_{n}=\frac{(-1)^{n+1} n}{n+\sqrt{n}}$
(c) $a_{n}=\cos (2 / n)$
(d) $a_{n}=\{(\ln n) /(\ln 2 n)\}$
(e) $a_{n}=\left(\tan ^{-1} n\right) / n$
(f) $a_{n}=\ln (n+1)$ -
$\ln n$
(g) $a_{n}=\sqrt[n]{2^{1+3 n}}$
(h) $a_{n}=2^{-n} \cos n \pi$
(i) $a_{n}=(\sin 2 n) /(1+\sqrt{n})$
(k) $a_{n}=n-\sqrt{n+1} \sqrt{n+3}$
(j) $a_{n}=(\ln n)^{2} / n$

Homework: 1-25 (every 4th), 31-59 (every 4th)

