Section 11.1

Definition: A sequence is a function f whose domain is the set of positive integers.

Exercise 1. List the first four terms and the tenth term of each sequence:

(a) {
$$\frac{n}{n+1}$$
 }
(b) { $2 + (0.1)^n$ }
(c) { $(-1)^{n+1} \frac{n^2}{3n-1}$ }
(d) { 4 }

For some sequences we state the first term a_1 , together with a rule for obtaining any term a_{k+1} from the preceding term a_k whenever $k \ge 1$. We call this a <u>recursive definition</u>, and the sequence is said to be defined **recursively**.

Exercise 2. Find the first four terms and the *n*th of the sequence defined recursively as follows:

 $a_1 = 3$ and $a_{k+1} = 2a_k$ for $k \ge 1$.

Class Exercise 1. List the first five terms of the sequence.

(a) $a_n = \frac{3^n}{1+2^n}$ (b) $a_n = \cos \frac{n\pi}{2}$ (c) $a_n = \frac{(-1)^n n}{n!+1}$ (d) $a_1 = 6, a_{n+1} = \frac{a_n}{n}$ (e) $a_1 = 2, a_2 = 1, a_{n+1} = a_n - a_{n-1}$

Exercise 3. Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues. (a) $\{1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \frac{1}{81}, \dots\}$

Class Exercise 2. Find a formula for the general term a_n of the sequence, assuming that the pattern of the first few terms continues. (a) { 5, 8, 11, 14, 17 } (b) {1,0,-1,0,1,0,-1,0,....}

<u>Definition</u>: A sequence $\{a_n\}$ has the limit L and we write

 $\lim_{n\to\infty} a_n = L \text{ or } a_n \to L \text{ as } n \to \infty$

if we can make the terms a_n as close to L as we like by taking n sufficiently large. If $\lim_{n\to\infty} a_n$ exists, we say the sequence <u>converges</u> (or is <u>convergent</u>). Otherwise, we say the sequence **diverges** (or it is **divergent**).

Definition: The notation

 $\lim_{n\to\infty} a_n = \infty$

means that for every positive real number P there exists a number N such that $a_n > P$ whenever n > N.

<u>Theorem</u>: Let $\{a_n\}$ be a sequence, let $f(n) = a_n$, and suppose that f(x) exists for every real number $x \ge 1$,

(i) If $\lim_{x\to\infty} f(x) = L$, then $\lim_{n\to\infty} f(n) = L$. (ii) If $\lim_{x\to\infty} f(x) = \infty$ (or $-\infty$), then $\lim_{n\to\infty} f(n) = \infty$ (or $-\infty$).

Exercise 4. If $a_n = 1 + \frac{1}{n}$, determine whether $\{a_n\}$ converges or diverges.

Exercise 5. Determine whether the sequence converges or diverges: (a) $\left\{ \frac{1}{4}n^2 - 1 \right\}$ (b) $\left\{ (-1)^{n-1} \right\}$.

Exercise 6. Determine whether the sequence $\left\{ \frac{5n}{e^{2n}} \right\}$ converges or diverges.

<u>Theorem</u>: (i) $\lim_{n\to\infty} r^n = 0$ if |r| < 1(ii) $\lim_{n\to\infty} |r^n| = \infty$ if |r| > 1

Exercise 7. List the first four terms of the sequence, and determine whether the sequence converges or diverges: (a) $\left\{ \left(-\frac{2}{3}\right)^n \right\}$

(b) { $(1.01)^n$ }

Exercise 8. Find the limit of the sequence $\left\{ \frac{2n^2}{5n^2-3} \right\}$.

Exercise 9. Determine whether the sequence converges or diverges. If it converges, find the limit. (a) $a_n = \frac{n^3}{n^3+1}$

(a) $a_n = \frac{n^3}{n^3 + 1}$ (b) $a_n = \frac{n^3}{n+1}$ (c) $a_n = \frac{3^{n+2}}{5^n}$ (d) $a_n = \sqrt{\frac{n+1}{9n+1}}$

<u>**Theorem**</u>: Let $\{a_n\}$ be a sequence. If $\lim_{n\to\infty} |a_n| = 0$, then $\lim_{n\to\infty} a_n = 0$.

Exercise 10. Suppose the nth term of a sequence is

$$a_n = (-1)^{n+1} \frac{1}{n}$$

Prove that $\lim_{n\to\infty} a_n = 0$.

Definition: A sequence is **monotonic** if successive terms are non-decreasing:

 $a_1 \le a_2 \dots \le a_n \le \dots;$

or if they are non-increasing:

 $a_1 \ge a_2 \ge \dots \ge a_n \ge \dots$

Example: An example of a monotonic sequence is $a_n = \frac{1}{n}$.

<u>Definition</u>: A sequence $\{a_n\}$ is <u>bounded above</u> if there is a number M such that

$$a_n \leq M$$
 for all $n \geq 1$.

It is **bounded below** if there is a number m such that

 $m \leq a_n$ for all $n \geq 1$.

If it is bounded above and below, then $\{a_n\}$ is a **bounded sequence**.

Example: An example of a bounded sequence is $a_n = 10 - \frac{1}{n}$.

Exercise 11. Determine whether the sequence is increasing, decreasing, or monotonic. Is the sequence bounded?

(a) $a_n = (-2)^{n+1}$ (b) $a_n = \frac{2n-3}{3n+4}$ (c) $a_n = ne^{-n}$ (d) $a_n = n + \frac{1}{n}$

Theorem: A bounded, monotonic sequence has a limit.

Class Exercise 3. Determine whether the sequence converges or diverges. If it converges, find the limit.

(a) $a_n = e^{2n/(n+2)}$ (b) $a_n = \frac{(-1)^{n+1}n}{n+\sqrt{n}}$ (c) $a_n = \cos(2/n)$ (d) $a_n = \{ (\ln n)/(\ln 2n) \}$ (e) $a_n = (\tan^{-1}n)/n$ (f) $a_n = \ln(n+1) - \ln n$ (g) $a_n = \sqrt[n]{2^{1+3n}}$ (h) $a_n = 2^{-n} \cos n\pi$ (i) $a_n = (\sin 2n)/(1+\sqrt{n})$ (j) $a_n = (\ln n)^2/n$ (k) $a_n = n - \sqrt{n+1}\sqrt{n+3}$

Homework: 1-25 (every 4th), 31-59 (every 4th)