Section 11.11

Theorem: Let f have $n+1$ derivatives throughout an interval containing c. If x is any number in the interval and $x \neq c$, then the error in approximating $f(x)$ by the nth degree Taylor polynomial of f at c,

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is less than $\left|R_{n}(x)\right|$, where

$$
R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}
$$

and z is the number between c and x.
Exercise 1. Let $f(x)=\ln x$.
(a) Find $P_{3}(x)$ and $R_{3}(x)$ at $c=1$.
(b) Approximate ln 1.1 to four decimal places by means of $P_{3}(1.1)$, and use $R_{3}(1.1)$ to estimate the error in this approximation.

Class Exercise 1. (a) Approximate f by a Taylor polynomial with degree n at the number a. (b) Use Taylor's Inequality to estimate the accuracy of the approximation $f(x) \approx T_{n}(x)$ when x lies in the given interval.
(i) $f(x)=x^{-2}, a=1, n=2,0.9 \leq x \leq 1.1$
(ii) $f(x)=\sin x, a=\pi / 6, n=4,0 \leq x \leq \pi / 3$
(iii) $f(x)=\ln (1+2 x), a=1, n=3,0.5 \leq x \leq 1.5$
(iv) $f(x)=x \ln x, a=1, n=3,0.5 \leq x \leq 1.5$
(v) $f(x)=\sinh 2 x, a=0, n=5,-1 \leq x \leq 1$

Exercise 2. Use a Taylor polynomial to approximate $\cos 61^{\circ}$, and estimate the accuracy of the approximation.

Class Exercise 2. Use a Taylor polynomial to approximate $\sin 38^{\circ}$, and estimate the accuracy of the approximation.

Class Exercise 3. Suppose you know that

$$
f^{(n)}(4)=\frac{(-1)^{n} \cdot n!}{3^{n}(n+1)}
$$

and the Taylor series of f centered at 4 converges to $f(x)$ for all x in the interval of convergence. Show that the fifth-degree Taylor polynomial approximates $f(5)$ with error less than 0.0002 .

Homework: 3-31 (every 4th)

