Section 11.2

Definition: An **infinite series** (or simply a **series**) is an expression of the form

 $a_1 + a_2 + \dots + a_n + \dots,$

or, in summation notation,

$$\sum_{n=1}^{\infty} a_n$$
, or $\sum a_n$

Each number a_k is a <u>term</u> of the series, and a_n is the <u>**nth term**</u>.

<u>Definition</u>: (i) The kth partial sum S_k of the series $\sum a_n$ is

 $S_k = a_1 + a_2 + \dots + a_k.$

(ii) The sequence of partial sums of the series $\sum a_n$ is

 $S_1, S_2, S_3, \dots, S_n, \dots$

<u>Definition</u> A series $\sum_{n \in \mathbb{N}} a_n$ is <u>convergent</u> (or <u>converges</u>) if its sequence of partial sums $\{S_n\}$ converges - that is, if

 $\lim_{n\to\infty} S_n = S$ for some real number S.

The limit S is the **<u>sum</u>** of the series $\sum a_n$, and we write

$$S = a_1 + a_2 + \dots + a_n + \dots$$

The series $\sum a_n$ is **divergent** (or **diverges**) if $\{S_n\}$ diverges. A divergent sequence has no sum.

Exercise 1. Given the series

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{n(n+1)}\dots$$

(a) find S_1 , S_2 , S_3 , S_4 , S_5 , and S_6 (b) find S_n

(c) show that the series converges and find its sum

Class Exercise 1. Determine whether the series is convergent or divergent by expressing s_n as a telescoping sum. If it is convergent, find its sum.

(a) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$ (b) $\sum_{n=1}^{\infty} \cos \frac{1}{n^2} - \cos \frac{1}{(n+1)^2}$ (c) $\sum_{n=2}^{\infty} \frac{1}{n^3-n}$

Exercise 2. Given the series:

$$\sum_{n=1}^{\infty} (-1)^{n-1} = 1 + (-1) + 1 + (-1) + \dots + (-1)^{n-1} + \dots,$$

- (a) find S_1, S_2, S_3, S_4, S_5 , and S_6
- (b) find S_n
- (c) show that the series diverges.

Exercise 3. Prove that the following series is divergent:

 $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$

<u>Theorem</u>: Let $a \neq 0$. The geometric series

 $a + ar + ar^2 + \dots + ar^{n-1} + \dots$

(i) converges and has the sum $S = \frac{a}{1-r}$ if |r| < 1

(ii) diverges if $|r| \ge 1$

Exercise 4. Prove that the following series converges, and find its sum:

 $0.6 + 0.06 + 0.006 + 0.0006 + \dots + \frac{6}{10^n} + \dots$

Exercise 5. Prove that the following series converges, and find its sum:

 $2 + \frac{2}{3} + \frac{2}{3^2} + \dots + \frac{2}{3^{n-1}} + \dots$

Class Exercise 2. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.

(a) $4 + 3 + \frac{9}{4} + \frac{27}{16} + \dots$ (b) $2 + 0.5 + 0.125 + 0.03125 + \dots$ (c) $\sum_{n=1}^{\infty} \frac{10^n}{(-9)^{n-1}}$ (d) $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^n}$ (e) $\sum_{n=1}^{\infty} \frac{e^n}{3^{n-1}}$

<u>Theorem</u>: If a series $\sum a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$.

<u>*n*-th term test</u>: (i) If $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ is divergent.

(ii) If $\lim_{n\to\infty} a_n = 0$, then further investigation is necessary to determine whether the series $\sum a_n$ is convergent or divergent.

Exercise 6. If $\lim_{n\to\infty} a_n = 0$, can the series $\sum a_n$ diverge?

<u>Theorem</u>: If $\sum a_n$ and $\sum b_n$ are series such that $a_j = b_j$ for every j > k, where k is a positive integer, then both series converge or both series diverge.

Theorem: For any positive integer k, the series

 $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ and $\sum_{n=k+1}^{\infty} a_n = a_{k+1} + a_{k+2} + \dots$

either both converge or both diverge.

Exercise 7. Show that the following series converges:

$$\frac{1}{3\cdot 4} + \frac{1}{4\cdot 5} + \dots + \frac{1}{(n+2)(n+3)} + \dots$$

<u>Theorem</u>: If $\sum a_n$ and $\sum b_n$ are convergent series with sums A and B, respectively, then (i) $\sum (a_n + b_n)$ converges and has sum A + B(ii) $\sum (a_n - b_n)$ converges and has sum cA for every real number c(iii) $\sum (a_n - b_n)$ converges and has sum A - B

Exercise 8. Prove that the following series converges, and find its sum:

$$\sum_{n=1}^{\infty} \left[\frac{7}{n(n+1)} + \frac{2}{3^{n-1}} \right].$$

<u>Theorem</u>: If $\sum a_n$ is a convergent series and $\sum b_n$ is divergent, then $\sum (a_n + b_n)$ is divergent.

Exercise 9. Determine the convergence or divergence of the series

$$\sum_{n=1}^{\infty} \left(\frac{1}{5^n} + \frac{1}{n} \right)$$

Class Exercise 3. Determine whether the series is convergent or divergent. If it is convergent,

Class Exercise 3. Determining find its sum. (a) $\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^2}$ (b) $\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$ (c) $\sum_{n=1}^{\infty} [(0.8)^{n-1} - (0.3)^n]$ (d) $\sum_{n=1}^{\infty} \frac{1}{1+(\frac{2}{3})^n}$ (e) $\sum_{k=1}^{\infty} (\cos 1)^k$ (f) $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$

Homework: 13, 15, 17-33 (every 4th), 39, 47, 53 - 65 (every 4th)