Section 11.2

Definition: An infinite series (or simply a series) is an expression of the form

$$
a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}+\ldots \ldots .
$$

or, in summation notation,

$$
\sum_{n=1}^{\infty} a_{n}, \text { or } \sum a_{n}
$$

Each number a_{k} is a term of the series, and a_{n} is the nth term.
Definition: (i) The k th partial sum S_{k} of the series $\sum a_{n}$ is

$$
S_{k}=a_{1}+a_{2}+\ldots \ldots \ldots+a_{k}
$$

(ii) The sequence of partial sums of the series $\sum a_{n}$ is

$$
S_{1}, S_{2}, S_{3}, \ldots \ldots, S_{n}, \ldots \ldots
$$

Definition A series $\sum a_{n}$ is convergent (or converges) if its sequence of partial sums $\left\{S_{n}\right\}$ converges - that is, if

$$
\lim _{n \rightarrow \infty} S_{n}=S \text { for some real number } S
$$

The limit S is the sum of the series $\sum a_{n}$, and we write

$$
S=a_{1}+a_{2}+\ldots \ldots \ldots .+a_{n}+\ldots \ldots . .
$$

The series $\sum a_{n}$ is divergent (or diverges) if $\left\{S_{n}\right\}$ diverges. A divergent sequence has no sum.

Exercise 1. Given the series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots \ldots \ldots .+\frac{1}{n(n+1)} \ldots \ldots .
$$

(a) find $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$, and S_{6}
(b) find S_{n}
(c) show that the series converges and find its sum

Class Exercise 1. Determine whether the series is convergent or divergent by expressing s_{n} as a telescoping sum. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$
(b) $\sum_{n=1}^{\infty} \cos \frac{1}{n^{2}}-\cos \frac{1}{(n+1)^{2}}$
(c) $\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}$

Exercise 2. Given the series:

$$
\sum_{n=1}^{\infty}(-1)^{n-1}=1+(-1)+1+(-1)+\ldots \ldots \ldots+(-1)^{n-1}+\ldots \ldots
$$

(a) find $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$, and S_{6}
(b) find S_{n}
(c) show that the series diverges.

Exercise 3. Prove that the following series is divergent:

$$
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots .+\frac{1}{n}+\ldots \ldots .
$$

Theorem: Let $a \neq 0$. The geometric series

$$
a+a r+a r^{2}+\ldots \ldots \ldots .+a r^{n-1}+\ldots \ldots \ldots
$$

(i) converges and has the sum $S=\frac{a}{1-r}$ if $|r|<1$
(ii) diverges if $|r| \geq 1$

Exercise 4. Prove that the following series converges, and find its sum:

$$
0.6+0.06+0.006+0.0006+\ldots .+\frac{6}{10^{n}}+\ldots \ldots . .
$$

Exercise 5. Prove that the following series converges, and find its sum:

$$
2+\frac{2}{3}+\frac{2}{3^{2}}+\ldots \ldots \ldots . .+\frac{2}{3^{n-1}}+\ldots \ldots
$$

Class Exercise 2. Determine whether the geometric series is convergent or divergent. If it is convergent, find its sum.
(a) $4+3+\frac{9}{4}+\frac{27}{16}+\ldots \ldots$
(b) $2+0.5+0.125+0.03125+\ldots \ldots$.
(c) $\sum_{n=1}^{\infty} \frac{10^{n}}{(-9)^{n-1}}$
(d) $\sum_{n=0}^{\infty} \frac{1}{(\sqrt{2})^{n}}$
(e) $\sum_{n=1}^{\infty} \frac{e^{n}}{3^{n-1}}$

Theorem: If a series $\sum a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
n-th term test: (i) If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum a_{n}$ is divergent.
(ii) If $\lim _{n \rightarrow \infty} a_{n}=0$, then further investigation is necessary to determine whether the series $\sum a_{n}$ is convergent or divergent.

Exercise 6. If $\lim _{n \rightarrow \infty} a_{n}=0$, can the series $\sum a_{n}$ diverge?
Theorem: If $\sum a_{n}$ and $\sum b_{n}$ are series such that $a_{j}=b_{j}$ for every $j>k$, where k is a positive integer, then both series converge or both series diverge.

Theorem: For any positive integer k, the series

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\ldots \ldots . \text { and } \sum_{n=k+1}^{\infty} a_{n}=a_{k+1}+a_{k+2}+\ldots \ldots
$$

either both converge or both diverge.
Exercise 7. Show that the following series converges:

$$
\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5}+\ldots \ldots . .+\frac{1}{(n+2)(n+3)}+\ldots \ldots
$$

Theorem: If $\sum a_{n}$ and $\sum b_{n}$ are convergent series with sums A and B, respectively, then
(i) $\sum\left(a_{n}+b_{n}\right)$ converges and has sum $A+B$
(ii) $\sum c a_{n}$ converges and has sum $c A$ for every real number c
(iii) $\sum\left(a_{n}-b_{n}\right)$ converges and has sum $A-B$

Exercise 8. Prove that the following series converges, and find its sum:

$$
\sum_{n=1}^{\infty}\left[\frac{7}{n(n+1)}+\frac{2}{3^{n-1}}\right] .
$$

Theorem: If $\sum a_{n}$ is a convergent series and $\sum b_{n}$ is divergent, then $\sum\left(a_{n}+b_{n}\right)$ is divergent.
Exercise 9. Determine the convergence or divergence of the series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{5^{n}}+\frac{1}{n}\right) .
$$

Class Exercise 3. Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{k=1}^{\infty} \frac{k(k+2)}{(k+3)^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{1+3^{n}}{2^{n}}$
(c) $\sum_{n=1}^{\infty=1}\left[(0.8)^{n-1}-(0.3)^{n}\right]$
(d) $\sum_{n=1}^{\infty} \frac{1}{1+\left(\frac{2}{3}\right)^{n}}$
(e) $\sum_{k=1}^{\infty}(\cos 1)^{k}$
(f) $\sum_{n=1}^{\infty=1}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$
(g) $\sum_{n=1}^{\infty} \frac{e^{n}}{n^{2}}$

Homework: 13, 15, 17-33 (every 4th), 39, 47, 53-65 (every 4th)

