Section 11.5

Definition: An alternating series is a series whose terms are alternately positive and negative.

Alternating Series Test: If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \dots + b_n > 0$$

satisfies

(i)
$$b_{n+1} \leq b_n$$
 for all n and (ii) $\lim_{n\to\infty} b_n = 0$

then the series is convergent.

Exercise 1. Determine whether the alternating series converges or diverges. (a) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n^2-3}$ (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{4n-3}$

Exercise 2. Prove that the series

$$1 - \frac{1}{3!} + \frac{1}{5!} - \dots + (-1)^{n-1} \frac{1}{(2n-1)!} + \dots$$

is convergent.

Exercise 3. Does the alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

converge?

Class Exercise 1. Test the series for convergence or divergence.

Class Exercise 1. Test the series for (a) $\frac{2}{3} - \frac{2}{5} + \frac{2}{7} - \frac{2}{9} + \frac{2}{11} - \dots$ (b) $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \frac{1}{\sqrt{6}} - \dots$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\ln(n+4)}$ (d) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3+2}}$ (e) $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{2n+3}$ (f) $\sum_{n=1}^{\infty} (-1)^{n+1} ne^{-n}$ (g) $\sum_{n=1}^{\infty} (-1)^{n-2} \arctan n$ (h) $\sum_{n=1}^{\infty} \frac{n \cos n\pi}{2^n}$ (i) $\sum_{n=1}^{\infty} (-1)^n \cos(\frac{\pi}{n})$ (j) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$

The Alternating Series Estimation Theorem: If the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$ satisfies the three conditions of the previous theorem, then for $n \ge N$,

$$s_n = u_1 - u_2 + \dots + (-1)^{n+1} u_n$$

approximates the sum L of the series with an error whose absolute value is less than u_{n+1} , the absolute value of the first unused term. Furthermore, the sum L lies between any two successive partial sums s_n and s_{n+1} , and the remainder $L - s_n$ has the same sign as the first unused term.

Exercise 4. Let's try the above theorem on a series whose sum we know:

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n} = 1 - \frac{1}{2} + \frac{1}{4} - \dots$$

Exercise 5. Approximate the sum:

$$1 - \frac{1}{3!} + \frac{1}{5!} - \dots + (-1)^n \frac{1}{(2n-1)!} + \dots$$

to five decimal places.

Class Exercise 2. How many terms of the series do we need to add in order to find the sum to the indicated accuracy?

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \cdot 5^n}$ (| error | < 0.0001) (b) $\sum_{n=1}^{\infty} (-1)^{n-1} n e^{-n}$ (| error | < 0.01)

Class Exercise 3. Approximate the sum of the series correct to four decimal places.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^6}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{3^n n!}$

<u>Definition</u>: A series $\sum a_n$ is **<u>absolutely convergent</u>** if the series

$$\sum |a_n| = |a_1| + |a_2| + \dots + |a_n| + \dots$$

is convergent.

Exercise 6. Prove that the following alternating series is absolutely convergent:

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + (-1)^{n+1} \frac{1}{n^2} + \dots$$

Exercise 7. The alternating harmonic series is

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}.$$

Show that the series is (a) convergent and (b) not absolutely convergent

<u>**Definition**</u>: A series $\sum a_n$ is <u>conditionally convergent</u> if $\sum a_n$ is convergent and $\sum |a_n|$ is divergent.

<u>Theorem</u>: If a series $\sum a_n$ is absolutely convergent, then $\sum a_n$ is convergent.

Exercise 8. Let $\sum a_n$ be the series

$$\frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} - \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} - \frac{1}{2^7} - \frac{1}{2^8} + \dots,$$

where the signs of the terms vary in pairs as indicated and where $|a_n| = 1/2^n$. Determine whether $\sum a_n$ converges or diverges.

Exercise 9. Determine whether the following series is convergent or divergent:

$$\sin 1 + \frac{\sin 2}{2^2} + \frac{\sin 3}{3^2} + \dots + \frac{\sin n}{n^2} + \dots$$

Class Exercise 4. Determine whether the series is absolutely convergent, conditionally convergent, or divergent: (a) $\sum_{n=1}^{\infty} \frac{(-2)^n}{n}$ (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+4}$

Homework: 1-17 (every 4th), 25, 29, 33, 35, 39, 43, 47