
Section 11.6

Exercise 1.

Exercise 2.

Exercise 3.

Exercise 4.

Ratio Test: Let
P

an be a series of nonzero terms, and suppose
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(i) If L < 1, the series is absolutely convergent.
(ii) If L > 1 or limn!1 jan+1

an
j = 1, the series is divergent.

(iii) If L = 1, apply a di�erent test; the series may be absolutely convergent, conditionally conver-
gent, or divergent.

Exercise 5. Determine the convergence of the series: (a)
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Exercise 6. Determine the convergence of
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Class Exercise 1. Investigate the convergence of the following series.
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The Root Test

(i) If limn!1
n
p
janj = L < 1, then the series

P1
n=1 an is absolutely convergent.

(ii) If limn!1
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janj = L > 1 or limn!1
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janj = 1, then the series
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n=1 an is divergen-

t.

(iii) If limn!1
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janj = 1, the Root Test is inconclusive.

Exercise 7. Determine the convergence or divergence of
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Class Exercise 2. Which of the following series converge, and which diverge?
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Class Exercise 3. Determine whether the series is absolutely convergent, conditionally conver-
gent, or divergent.
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Homework: 3-19 (every 4th), 21-33 (every 4th)
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