Section 11.8

If we let $f(x)=1 /(1-x)$ with $|x|<1$, then

$$
f(x)=1+x+x^{2}+\ldots \ldots \ldots+x^{n}+\ldots \ldots \ldots
$$

We say that $f(x)$ is represented by this power series.
Definition: Let x be a variable. A power series in x is a series of the form

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{n} x^{n}+\ldots .
$$

where each a_{k} is a real number.
Exercise 1. Find all values of x for which the following power series is absolutely convergent:

$$
1+\frac{1}{5} x+\frac{2}{5^{2}} x^{2}+\ldots \ldots . .+\frac{n}{5^{n}} x^{n}+\ldots \ldots .
$$

Exercise 2. Find all values of x for which $\sum \frac{1}{n!} x^{n}$ is convergent:

$$
1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\ldots \ldots+\frac{1}{n!} x^{n}+\ldots \ldots
$$

Class Exercise 1. Find all values of x for which $\sum n!x^{n}$ is convergent.
Class Exercise 2. For what values of x do the following power series converge?
(a) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$
(b) $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}$

Theorem:
(i) If a power series $\sum a_{n} x^{n}$ converges for a nonzero number c, then it is absolutely convergent whenever $|x|<|c|$.
(ii) If a power series $\sum a_{n} x^{n}$ diverges for a nonzero number d, then it diverges whenever $|x|$ $>|d|$.

Theorem: If $\sum a_{n} x^{n}$ is a power series, then exactly one of the following is true:
(i) The series converges only if $x=0$.
(ii) The series is absolutely convergent for every x.
(iii) There is a number $r>0$ such that the series is absolutely convergent if x is in the open interval $(-r, r)$ and divergent if $x<-r$ or $x>r$.

Definition: The number r is called the radius of convergence of the series.
Definition: The totality of numbers for which a power series converges is called the interval of convergence.

Exercise 3. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^{n}$.
Definition: Let c be a real number and x a variable. A power series in $x-c$ is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+\cdots+a_{n}(x-c)^{n}+\cdots,
$$

where each a_{k} is a real number.
Exercise 4. Find the interval and radius of convergence of the series:

$$
1-\frac{1}{2}(x-3)+\frac{1}{3}(x-3)^{2}+\cdots+(-1)^{n} \frac{1}{n+1}(x-3)^{n}+\cdots .
$$

Class Exercise 3. Find the radius of convergence and interval of convergence of the series.
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{\sqrt[3]{n}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{n}}{n^{2}}$
(c) $\sum_{n=1}^{\infty} n^{n} x^{n}$
(d) $\sum_{n=1}^{\infty} \frac{10^{n} x^{n}}{n^{3}}$
(e) $\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n}}$
(f) $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
(g) $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{2 n+1}$
(h) $\sum_{n=1}^{\infty} \frac{n}{4^{n}}(x+1)^{n}$
(i) $\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{5^{n} \sqrt{n}}$
(j) $\sum_{n=2}^{\infty} \frac{b^{n}}{\ln n}(x-a)^{n}, b>0$
(k) $\sum_{n=1}^{\infty} \frac{n^{2} x^{n}}{2 \cdot 4 \cdot 6 \cdot 8 \cdots(2 n)}$
(l) $\sum_{n=2}^{\infty} \frac{x^{2 n}}{n(\ln n)^{2}}$
(m) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{1 \cdot 3 \cdot 5 \cdots(2 n-1)}$

Homework: 5-25 (every 4th), 31, 35, 39

