Section 11.8

If we let f(x) = 1/(1-x) with |x| < 1, then

 $f(x) = 1 + x + x^2 + \dots + x^n + \dots$

We say that f(x) is represented by this power series.

Definition: Let x be a variable. A **power series in** x is a series of the form

 $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots,$

where each a_k is a real number.

Exercise 1. Find all values of x for which the following power series is absolutely convergent:

 $1 + \frac{1}{5}x + \frac{2}{5^2}x^2 + \dots + \frac{n}{5^n}x^n + \dots$

Exercise 2. Find all values of x for which $\sum \frac{1}{n!} x^n$ is convergent:

$$1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots + \frac{1}{n!}x^n + \dots$$

Class Exercise 1. Find all values of x for which $\sum n! x^n$ is convergent.

Class Exercise 2. For what values of x do the following power series converge? (a) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$

Theorem:

(i) If a power series $\sum a_n x^n$ converges for a nonzero number c, then it is absolutely convergent whenever |x| < |c|.

(ii) If a power series $\sum a_n x^n$ diverges for a nonzero number d, then it diverges whenever |x| > |d|.

<u>Theorem</u>: If $\sum a_n x^n$ is a power series, then exactly one of the following is true: (i) The series converges only if x = 0.

(ii) The series is absolutely convergent for every x.

(iii) There is a number r > 0 such that the series is absolutely convergent if x is in the open interval (-r, r) and divergent if x < -r or x > r.

Definition: The number r is called the **radius of convergence** of the series.

Definition: The totality of numbers for which a power series converges is called the **interval of convergence**.

Exercise 3. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} x^n$.

Definition: Let c be a real number and x a variable. A **power series in** x - c is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \dots + a_n (x-c)^n + \dots$$

where each a_k is a real number.

Exercise 4. Find the interval and radius of convergence of the series:

 $1 - \frac{1}{2}(x-3) + \frac{1}{3}(x-3)^2 + \dots + (-1)^n \frac{1}{n+1}(x-3)^n + \dots$

Class Exercise 3. Find the radius of convergence and interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{\sqrt[3]{n}}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$ (c) $\sum_{n=1}^{\infty} n^n x^n$ (d) $\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$ (e) $\sum_{n=1}^{\infty} \frac{x^n}{n^{3n}}$
(f) $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ (g) $\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$ (h) $\sum_{n=1}^{\infty} \frac{n}{4^n} (x+1)^n$ (i) $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$
(j) $\sum_{n=2}^{\infty} \frac{b^n}{\ln n} (x-a)^n, b > 0$ (k) $\sum_{n=1}^{\infty} \frac{n^2 x^n}{2\cdot 4\cdot 6\cdot 8\cdots (2n)}$ (l) $\sum_{n=2}^{\infty} \frac{x^{2n}}{n(\ln n)^2}$ (m) $\sum_{n=1}^{\infty} \frac{n! x^n}{1\cdot 3\cdot 5\cdots (2n-1)}$

Homework: 5-25 (every 4th), 31, 35, 39