Section 11.9

A power series $\sum a_{n} x^{n}$ determines a function f whose domain is the interval of convergence of the series. Specifically, for each x in this interval we let $f(x)$ equal the sum of the series; that is,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots
$$

If a function f is defined in this way, we say that $\sum a_{n} x^{n}$ is a power series representation for $f(x)$ (or of $f(x)$). We also use the phrase f is represented by the power series.

Exercise 1. Find a function f that is represented by the power series

$$
1-x+x^{2}-x^{3}+\cdots+(-1)^{n} x^{n}+\cdots
$$

Exercise 2. Find a power series representation for the function, $f(x)=\frac{1}{1+3 x^{2}}$, and determine the interval of convergence.

Exercise 3. Re-express the following functions in a form that makes it easier to find the power series representation:
(a) $f(x)=\frac{x^{2}}{1+x^{5}}$
(b) $f(x)=\frac{x}{1-3 x^{7}}$
(c) $f(x)=\frac{1}{10-2 x^{8}}$
(d) $f(x)=\frac{3}{4+x}$

Class Exercise 1. Find a power series representation for the function and determine the interval of convergence.
(a) $f(x)=\frac{5}{1-4 x^{2}}$
(b) $f(x)=\frac{1}{x+10}$
(c) $f(x)=\frac{x}{2 x^{2}+1}$
(d) $f(x)=\frac{x^{2}}{a^{3}-x^{3}}$

Theorem: Suppose a power series $\sum a_{n} x^{n}$ has a radius of convergence $r>0$, and let f be defined by

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots
$$

for every x in the interval of convergence. If $-r<x<r$, then
(i) $f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}+\cdots=\sum_{n=1}^{\infty} n a_{n} x^{n-1}$
(ii) $\int_{0}^{x} f(t) d t=a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}+\cdots+a_{n} \frac{x^{n+1}}{n+1}+\cdots$

$$
=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} .
$$

Exercise 4. Use a power series representation for $1 /(1+x)$ to obtain a power series representation for

$$
\frac{1}{(1+x)^{2}} \text { if }|x|<1 .
$$

Exercise 5. Find a power series representation for $\ln (1+x)$ if $|x|<1$.

Class Exercise 2. Find a power series representation for the function and determine the radius of convergence.
(a) $f(x)=x^{2} \tan ^{-1}\left(x^{3}\right)$
(b) $f(x)=\left(\frac{x}{2-x}\right)^{3}$
(c) $f(x)=\frac{x^{2}+x}{(1-x)^{3}}$

Exercise 6. (a) Evaluate $\int\left[1 /\left(1+x^{7}\right)\right] d x$ as a power series.
(b) Use part (a) to approximate $\int_{0}^{0.5}\left[1 /\left(1+x^{7}\right)\right] d x$ correct to within 10^{-7}.

Class Exercise 3. Evaluate the indefinite integral as a power series. What is the radius of convergence?
(a) $\int \frac{t}{1+t^{3}} d t$
(b) $\int\left(\tan ^{-1} x\right) / x d x$.

Class Exercise 4. Use a power series representation to approximate the definite integral to six decimal places.
(a) $\int_{0}^{0.4} \ln \left(1+x^{4}\right) d x$
(b) $\int_{0}^{0.3} \frac{x^{2}}{1+x^{4}} d x$

Homework: 3, 9, 13, 17, 19, 25, 29, 33

