## Section 12.1

Definition: In order to represent points in space, we first choose a fixed point $O$ (the origin) and three directed lines through $O$ that are perpendicular to each other, called the coordinate axes and labeled the $x$-axis, $y$-axis, and $z$-axis.

Definition: The three coordinate axes determine the three coordinate planes.
Definition: Now if $P$ is any point in space, let $a$ be the (directed) distance from the $y z$-plane to $P$, let $b$ be the distance from the $x z$-plane to $P$, and let $c$ be the distance from the $x y$-plane to $P$. We represent the point $P$ by the ordered triple $(a, b, c)$ of real numbers and we call $a, b$, and $c$ the coordinates of $P ; a$ is the $x$-coordinate, $b$ is the $y$-coordinate, and $c$ is the $z$-coordinate. Thus, to locate the point $(a, b, c)$, we can start at the origin $O$ and move $a$ units along the $x$-axis, then $b$ units parallel to the $y$-axis, and the $c$ units parallel to the $z$-axis.

Definition: The point $P(a, b, c)$ determines a rectangular box. If we drop a perpendicular from $P$ to the $x y$-plane, we get a point $Q$ with coordinates $(a, b, 0)$ called the projection of $P$ onto the $x y$-plane. Similarly, $R(0, b, c)$ and $S(a, 0, c)$ are the projections of $P \overline{\text { onto the } y z \text {-plane and }}$ $x z$-plane, respectively.
Exercise 1. Sketch the points $(0,1,5),(3,1,6)$, and $(-1,1,4)$ on a single set of coordinate axes.
Class Exercise 1. Sketch the points $(0,5,2),(4,0,-1),(2,4,6)$, and $(1,-1,2)$ on a single set of coordinate axes. (\#2)

Exercise 2. What does the equation $x=4$ represent in $\mathbb{R}^{2}$ ? What does it represent in $\mathbb{R}^{3}$ ? Illustrate with sketches.

Exercise 3. What does the equation $y=3$ represent in $\mathbb{R}^{3}$ ? What does $z=5$ represent? What does the pair of equation $y=3, z=5$ represent? In other words, describe the set of points $(x, y, z)$ such that $y=3$ and $z=5$. Illustrate with a sketch. (\#6)

Distance Formula: The distance $\left|P_{1} P_{2}\right|$ between the points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Exercise 4. Find the distance between $P_{1}(2,1,5)$ and $P_{2}(-2,3,0)$. (Hass Example 3)
Class Exercise 2. Suppose we have points $P(2,-1,0), Q(4,1,1)$, and $R(4,-5,4)$. Find the lengths of the sides of the triangle $P Q R$. Is it a right triangle? It is an isosceles triangle? (\#8)
$\underline{\text { Equation of a Sphere: An equation of a sphere with center } C(h, k, l) \text { and radius } r \text { is }}$

$$
(x-h)^{2}+(y-k)^{2}+(z-l)^{2}=r^{2}
$$

Exercise 5. Find the center and radius of the sphere: $x^{2}+y^{2}+z^{2}+3 x-4 z+1=0$.
(Hass Sec 12.1 Example 4)
Class Exercise 3. Find an equation of the sphere with center $(2,-6,4)$ and radius 5. Describe its intersection with each of the coordinate planes. (\#12)

Class Exercise 4. Find an equation of the sphere that passes through the origin and whose center is $(1,2,3)$. $(\# 14)$

Class Exercise 5. Show that the equation represents a sphere, and find its center and radius:
(a) $x^{2}+y^{2}+z^{2}+8 x-6 y+2 z+17=0$.
(b) $3 x^{2}+3 y^{2}+3 z^{2}=10+6 y+12 z$. $(\# 16,18)$

Class Exercise 6. Describe in words the region of $\mathbb{R}^{3}$ represented by the equations or inequalities. (\#24-34 even)
(a) $y=2$
(b) $x \geq-3$
(c) $z^{2}=1$
(d) $y^{2}+z^{2}=16$
(e) $x=z$
(f) $x^{2}+y^{2}+z^{2}>2 z$

Homework: 1, 5, 9, 11-31 (every 4th), 37, 41

