Section 12.2

<u>Definition</u>: The term <u>vector</u> is a quantity that has both magnitude and direction.

Definition: For instance, suppose a particle moves along a line segment from point A to point B. The corresponding **displacement vector** \vec{v} has **initial point** A (the tail) and **terminal point** B (the tip) and we indicate this by writing $\vec{v} = \vec{AB}$.

<u>Definition</u>: Suppose that \overrightarrow{u} and \overrightarrow{v} have the same length and direction. We say that \overrightarrow{u} and v are **equivalent** and we write $\overrightarrow{u} = \overrightarrow{v}$.

<u>**Definition**</u>: The <u>zero vector</u>, denoted by $\overrightarrow{0}$, has length 0. It is the only vector with no specific direction.

<u>Definition</u>: If \vec{u} and \vec{v} are vectors positioned so the initial point of \vec{v} is at the terminal point of \vec{u} , the sum $\vec{u} + \vec{v}$ is the vector from the initial point of \vec{u} to the terminal point of \vec{v} .

Definition: If c is a scalar and \overrightarrow{v} is a vector, then the scalar multiple $c\overrightarrow{v}$ is the vector whose length is |c| times the length of \overrightarrow{v} and whose direction is the same as \overrightarrow{v} if c > 0 and is opposite to \overrightarrow{v} if c < 0. If c = 0 and $\overrightarrow{v} = \overrightarrow{0}$, then $c\overrightarrow{v} = \overrightarrow{0}$.

<u>**Definition**</u>: Notice that two nonzero vectors are <u>**parallel**</u> if they are scalar multiples of one another.

Definition: The vector $-\vec{v} = (-1)\vec{v}$ has the same length as \vec{v} but points in the opposite direction. We call it the **negative** of \vec{v} .

Definition: By the difference $\vec{u} - \vec{v}$ of two vectors we mean

$$\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{u} + (-\overrightarrow{v}).$$

Definition: If we place the initial point of a vector \vec{a} at the origin of a rectangular coordinate system, then the terminal point of \vec{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) depending on whether our coordinate system is two- or three- dimensional. These coordinates are called the **components** of \vec{a} and we write

$$\overrightarrow{a} = \langle a_1, a_2 \rangle$$
 or $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$.

<u>Definition</u>: The particular representation \overrightarrow{OP} from the origin to the point P is called the **position vector** of the point P.

Definition: Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector \overrightarrow{v} with representation \overrightarrow{AB} is

$$\overrightarrow{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

Definition: The **magnitude** or **length** of the vector \vec{v} is the length of any of its representations.

<u>Notation</u>: The **length** is denoted by $|\vec{v}|$.

Formula: The **length** of the two-dimensional vector $\vec{a} = \langle a_1, a_2 \rangle$ is

$$|\overrightarrow{a}| = \sqrt{a_1^2 + a_2^2}.$$

Formula: The **length** of the three-dimensional vector $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$ is

$$\mid \overrightarrow{a} \mid = \sqrt{a_1^2 + a_2^2 + a_3^2}.$$

<u>Formula</u>: If $\overrightarrow{a} = \langle a_1, a_2 \rangle$ and $\overrightarrow{b} = \langle b_1, b_2 \rangle$, then

$$\overrightarrow{a} + \overrightarrow{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\overrightarrow{a} - \overrightarrow{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$c\overrightarrow{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three-dimensional vectors,

 $\begin{array}{l} < a_1, \, a_2, \, a_3 > + < b_1, \, b_2, \, b_3 > = < a_1 + b_1, \, a_2 + b_2, \, a_3 + b_3 > \\ < a_1, \, a_2, \, a_3 > - < b_1, \, b_2, \, b_3 > = < a_1 - b_1, \, a_2 - b_2, \, a_3 - b_3 > \\ c < a_1, \, a_2, \, a_3 > = < ca_1, \, ca_2, \, ca_3 > \end{array}$

Properties of Vectors: If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} in V_n and c and d are scalars, then:

 $\begin{array}{c}
\hline
1. \overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a} \\
2. \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} \\
3. \overrightarrow{a} + \overrightarrow{0} = \overrightarrow{a} \\
4. \overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0} \\
5. c(\overrightarrow{a} + \overrightarrow{b}) = c\overrightarrow{a} + c\overrightarrow{b} \\
6. (c+d)\overrightarrow{a} = c\overrightarrow{a} + d\overrightarrow{a} \\
7. (cd)\overrightarrow{a} = c(d\overrightarrow{a}) \\
8. 1\overrightarrow{a} = \overrightarrow{a}
\end{array}$

Definition: The standard basis vectors are \overrightarrow{i} , \overrightarrow{j} , and \overrightarrow{k} , where

$$\vec{k} = \langle 1, 0, 0 \rangle$$
 $\vec{j} = \langle 0, 1, 0 \rangle$ $\vec{k} = \langle 0, 0, 1 \rangle$

Exercise 1. Find $\overrightarrow{a} + \overrightarrow{b}$, $2\overrightarrow{a} + 3\overrightarrow{b}$, $|\overrightarrow{a}|$, $|\overrightarrow{a} - \overrightarrow{b}|$. (a) $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{b} = 2\overrightarrow{i} - 5\overrightarrow{j}$ (b) $\overrightarrow{a} = 2\overrightarrow{i} - 5\overrightarrow{j}$, $\overrightarrow{b} = 3\overrightarrow{i} - \overrightarrow{j}$

Class Exercise 1. Find $\overrightarrow{a} + \overrightarrow{b}$, $2\overrightarrow{a} + 3\overrightarrow{b}$, $|\overrightarrow{a}|$, $|\overrightarrow{a} - \overrightarrow{b}|$. (a) $\overrightarrow{a} = 4\overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{b} = \overrightarrow{i} - 2\overrightarrow{j}$ (#20) (b) $\overrightarrow{a} = 2\overrightarrow{i} - 4\overrightarrow{j} + 4\overrightarrow{k}$, $\overrightarrow{b} = 2\overrightarrow{j} - \overrightarrow{k}$ (#22)

Definition: A **unit vector** is a vector whose length is 1.

Exercise 2. Find a unit vector \overrightarrow{u} in the direction of the vector from $P_1(1,0,1)$ to $P_2(3,2,0)$. (Hass Sec 12.2 Example 4)

Exercise 3. Find the unit vector \vec{u} that has the same direction as $3\vec{i} - 4\vec{j}$. (Swokowski Sec 14.1 Example 6)

Class Exercise 2. Find a unit vector that has the same direction as the given vector $\langle -4, 2, 4 \rangle$. (#24)

Exercise 4. A 75-N weight is suspended by two wires, as shown in the figure in the video. Find the forces \overrightarrow{F}_1 and \overrightarrow{F}_2 acting on both wires. (Hass Sec 12.2 Example 9)

Class Exercise 3. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg. The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each and the magnitude of each tension. (#36)

Homework: 3-35 (every 4th)