Section 12.2

Definition: The term vector is a quantity that has both magnitude and direction.
Definition: For instance, suppose a particle moves along a line segment from point A to point B. The corresponding displacement vector \vec{v} has initial point A (the tail) and terminal point B (the tip) and we indicate this by writing $\vec{v}=\overrightarrow{\overrightarrow{A B}}$.

Definition: Suppose that \vec{u} and \vec{v} have the same length and direction. We say that \vec{u} and v are equivalent and we write $\vec{u}=\vec{v}$.

Definition: The zero vector, denoted by $\overrightarrow{0}$, has length 0 . It is the only vector with no specific direction.

Definition: If \vec{u} and \vec{v} are vectors positioned so the initial point of \vec{v} is at the terminal point of \vec{u}, the sum $\vec{u}+\vec{v}$ is the vector from the initial point of \vec{u} to the terminal point of \vec{v}.

Definition: If c is a scalar and \vec{v} is a vector, then the scalar multiple $c \vec{v}$ is the vector whose length is $|c|$ times the length of \vec{v} and whose direction $\overline{\text { is the same as } \vec{v}}$ if $c>0$ and is opposite to \vec{v} if $c<0$. If $c=0$ and $\vec{v}=\overrightarrow{0}$, then $c \vec{v}=\overrightarrow{0}$.

Definition: Notice that two nonzero vectors are parallel if they are scalar multiples of one another.

Definition: The vector $-\vec{v}=(-1) \vec{v}$ has the same length as \vec{v} but points in the opposite direction. We call it the negative of \vec{v}.

Definition: By the difference $\vec{u}-\vec{v}$ of two vectors we mean

$$
\vec{u}-\vec{v}=\vec{u}+(-\vec{v})
$$

Definition: If we place the initial point of a vector \vec{a} at the origin of a rectangular coordinate system, then the terminal point of \vec{a} has coordinates of the form $\left(a_{1}, a_{2}\right)$ or (a_{1}, a_{2}, a_{3}) depending on whether our coordinate system is two- or three- dimensional. These coordinates are called the components of \vec{a} and we write

$$
\vec{a}=<a_{1}, a_{2}>\text { or } \vec{a}=<a_{1}, a_{2}, a_{3}>
$$

Definition: The particular representation $\overrightarrow{O P}$ from the origin to the point P is called the position vector of the point P .

Definition: Given the points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$, the vector \vec{v} with representation $\overrightarrow{A B}$ is

$$
\vec{v}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>
$$

Definition: The magnitude or length of the vector \vec{v} is the length of any of its representations.
Notation: The length is denoted by $|\vec{v}|$.
Formula: The length of the two-dimensional vector $\vec{a}=<a_{1}, a_{2}>$ is

$$
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}}
$$

Formula: The length of the three-dimensional vector $\vec{a}=<a_{1}, a_{2}, a_{3}>$ is

$$
|\vec{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

Formula: If $\vec{a}=<a_{1}, a_{2}>$ and $\vec{b}=<b_{1}, b_{2}>$, then

$$
\begin{aligned}
\vec{a}+\vec{b} & =<a_{1}+b_{1}, a_{2}+b_{2}> \\
\vec{a}-\vec{b} & =<a_{1}-b_{1}, a_{2}-b_{2}> \\
c \vec{a} & =<c a_{1}, c a_{2}>
\end{aligned}
$$

Similarly, for three-dimensional vectors,

$$
\begin{gathered}
<a_{1}, a_{2}, a_{3}>+<b_{1}, b_{2}, b_{3}>=<a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}> \\
<a_{1}, a_{2}, a_{3}>-<b_{1}, b_{2}, b_{3}>=<a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}> \\
c<a_{1}, a_{2}, a_{3}>=<c a_{1}, c a_{2}, c a_{3}>
\end{gathered}
$$

Properties of Vectors: If \vec{a}, \vec{b}, and \vec{c} in V_{n} and c and d are scalars, then:

1. $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
2. $\vec{a}+(\vec{b}+\vec{c})=(\vec{a}+\vec{b})+\vec{c}$
3. $\vec{a}+\overrightarrow{0}=\vec{a}$
4. $\vec{a}+(-\vec{a})=\overrightarrow{0}$
5. $c(\vec{a}+\vec{b})=c \vec{a}+c \vec{b}$
6. $(c+d) \vec{a}=c \vec{a}+d \vec{a}$
7. $(c d) \vec{a}=c(d \vec{a})$
8. $1 \vec{a}=\vec{a}$

Definition: The standard basis vectors are \vec{i}, \vec{j}, and \vec{k}, where

$$
\vec{i}=<1,0,0>\quad \vec{j}=<0,1,0>\quad \vec{k}=<0,0,1>
$$

Exercise 1. Find $\vec{a}+\vec{b}, 2 \vec{a}+3 \vec{b},|\vec{a}|,|\vec{a}-\vec{b}|$.
(a) $\vec{a}=\vec{i}+\vec{j}, \vec{b}=2 \vec{i}-5 \vec{j}$
(b) $\vec{a}=2 \vec{i}-5 \vec{j}, \vec{b}=3 \vec{i}-\vec{j}$

Class Exercise 1. Find $\vec{a}+\vec{b}, 2 \vec{a}+3 \vec{b},|\vec{a}|,|\vec{a}-\vec{b}|$.
(a) $\vec{a}=4 \vec{i}+\vec{j}, \vec{b}=\vec{i}-2 \vec{j}(\# 20)$
(b) $\vec{a}=2 \vec{i}-4 \vec{j}+4 \vec{k}, \vec{b}=2 \vec{j}-\vec{k}(\# 22)$

Definition: A unit vector is a vector whose length is 1.
Exercise 2. Find a unit vector \vec{u} in the direction of the vector from $P_{1}(1,0,1)$ to $P_{2}(3,2,0)$. (Hass Sec 12.2 Example 4)

Exercise 3. Find the unit vector \vec{u} that has the same direction as $3 \vec{i}-4 \vec{j}$. (Swokowski Sec 14.1 Example 6)

Class Exercise 2. Find a unit vector that has the same direction as the given vector $<-4,2,4>$. (\#24)

Exercise 4. A $75-\mathrm{N}$ weight is suspended by two wires, as shown in the figure in the video. Find the forces \vec{F}_{1} and \vec{F}_{2} acting on both wires. (Hass Sec 12.2 Example 9)

Class Exercise 3. Ropes 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg . The ropes, fastened at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each and the magnitude of each tension. (\#36)

Homework: 3-35 (every 4th)

