Section 12.3

<u>Definition</u>: If $\overrightarrow{a} = \langle a_1, a_2, a_3 \rangle$ and $\overrightarrow{b} = \langle b_1, b_2, b_3 \rangle$, then the dot product of \overrightarrow{a} and \overrightarrow{b} is the number of $\overrightarrow{a} \cdot \overrightarrow{b}$ given by

$$\overrightarrow{a} \cdot \overrightarrow{b} = a_1 b_1 + a_2 b_2 + a_3 b_3.$$

Exercise 1. Find $\overrightarrow{a} \cdot \overrightarrow{b}$. (a) $\overrightarrow{a} = \langle 2, 4, -3 \rangle$, $\overrightarrow{b} = \langle -1, 5, 2 \rangle$. (b) $\overrightarrow{a} = 3\overrightarrow{i} - 2\overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = 4\overrightarrow{i} + 5\overrightarrow{j} - 2\overrightarrow{k}$ (Swokowski Sec 14.3 Example 1)

Class Exercise 1. Find $\overrightarrow{a} \cdot \overrightarrow{b}$. (#2-8 even) (a) $\overrightarrow{a} = \langle -2, 3 \rangle$, $\overrightarrow{b} = \langle 0.7, 1.2 \rangle$ (b) $\overrightarrow{a} = \langle 6, -2, 3 \rangle$, $\overrightarrow{b} = \langle 2, 5, -1 \rangle$ (c) $\overrightarrow{a} = \langle p, -p, 2p \rangle$, $\overrightarrow{b} = \langle 2q, q, -q \rangle$ (d) $\overrightarrow{a} = 3 \overrightarrow{i} + 2 \overrightarrow{j} - \overrightarrow{k}$, $\overrightarrow{b} = 4 \overrightarrow{i} + 5 \overrightarrow{k}$

Properties of the Dot Product: If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are vectors in V_3 and c is a scalar, then 1. $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$ 2. $\overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{b} \cdot \overrightarrow{a}$ 3. $\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$ 4. $(c\overrightarrow{a}) \cdot \overrightarrow{b} = c(\overrightarrow{a} \cdot \overrightarrow{b}) = \overrightarrow{a} \cdot (c\overrightarrow{b})$ 5. $\overrightarrow{0} \cdot \overrightarrow{a} = 0$

<u>**Theorem**</u>: If θ is the angle between the vectors \overrightarrow{a} and \overrightarrow{b} , then

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta.$$

Corollary: If θ is the angle between the nonzero vectors \overrightarrow{a} and \overrightarrow{b} , then

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}.$$

Exercise 2. Find the angle between the vectors $\overrightarrow{a} = \langle 4, -3, 1 \rangle$ and $\overrightarrow{b} = \langle -1, -2, 2 \rangle$. (Swok Sec 14.3 Example 2)

Exercise 3. Find the angle between $\vec{u} = \vec{i} - 2\vec{j} - 2\vec{k}$ and $\vec{v} = 6\vec{i} + 3\vec{j} + 2\vec{k}$ (Hass Sec 12.3 Ex 2).

Exercise 4. Find the angle θ in the triangle *ABC* determined by the vertices A = (0,0), B = (3,5), and C = (5,2). (Hass Sec 12.3 Ex 3)

Class Exercise 2. Find the angle between the vectors. (a) $\overrightarrow{a} = \langle -2, 5 \rangle$ and $\overrightarrow{b} = \langle 5, 12 \rangle$ (b) $\overrightarrow{a} = \langle 4, 0, 2 \rangle$ and $\overrightarrow{b} = \langle 2, -1, 0 \rangle$ (c) $\overrightarrow{a} = \overrightarrow{i} + 2\overrightarrow{j} - 2\overrightarrow{k}$ and $\overrightarrow{b} = 4\overrightarrow{i} - 3\overrightarrow{k}$ (#16,18,20)

Class Exercise 3. Find, correct to the nearest degree, the three angles of the triangle with given vertices A(1, 0, -1), B(3, -2, 0), and C(1, 3, 3). (#22)

<u>**Definition**</u>: Two nonzero vectors \overrightarrow{a} and \overrightarrow{b} are called <u>**perpendicular**</u> or <u>**orthogonal**</u> if the angle between them is 90°.

<u>Theorem</u>: Two vectors \overrightarrow{a} and \overrightarrow{b} are orthogonal if and only if $\overrightarrow{a} \cdot \overrightarrow{b} = 0$.

Exercise 5. Prove that the vectors are orthogonal. (a) $\overrightarrow{i}, \overrightarrow{j}$ (b) $3\overrightarrow{i} - 7\overrightarrow{j} + 2\overrightarrow{k}, 10\overrightarrow{i} + 4\overrightarrow{j} - \overrightarrow{k}$ (Swok Sec 14.3 Exercise 3) Class Exercise 4. Determine whether the given vectors are orthogonal, parallel, or neither.

(a) $\overrightarrow{u} = \langle -3, 9, 6 \rangle$, $\overrightarrow{v} = \langle 4, -12, -8 \rangle$ (b) $\overrightarrow{u} = \overrightarrow{i} - \overrightarrow{j} + 2\overrightarrow{k}$, $\overrightarrow{v} = 2\overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ (c) $\overrightarrow{u} = \langle a, b, c \rangle$, $\overrightarrow{v} = \langle -b, a, 0 \rangle$ (#24)

Definition: The **direction angles** of a nonzero vector $\vec{a} = \langle a_1, a_2, a_3 \rangle$ are the angles α, β , and γ that \vec{a} makes with the positive x-, y-, and z-axes, respectively.

<u>Definition</u>: The <u>direction</u> cosines of these direction angles are $\cos \alpha$, $\cos \beta$, and $\cos \gamma$.

Here are some formulas:

 $\cos \alpha = \frac{a_1}{|\overrightarrow{a}|} \quad \cos \beta = \frac{a_2}{|\overrightarrow{a}|} \quad \cos \gamma = \frac{a_3}{|\overrightarrow{a}|}$

Exercise 6. Find the direction cosines and direction angles of the vector: < 1, 2, 3 >. (Stewart Ex 5)

Class Exercise 5. Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.)

 $\begin{array}{l} (\mathbf{a}) < 6, 3, -2 > \\ (\mathbf{b}) \ \frac{1}{2} \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k} \ (\#34, \, 36) \end{array}$

Definition: Suppose \overrightarrow{PQ} and \overrightarrow{PR} are representations of two vectors \overrightarrow{a} and \overrightarrow{b} with same initial point P. If S is the foot of the perpendicular from R to the line containing \overrightarrow{PQ} , then the vector with representation \overrightarrow{PS} is called the **vector projection** of \overrightarrow{b} onto \overrightarrow{a} .

<u>Notation</u>: The notation for the vector projection of \vec{v} onto \vec{v} is proj \vec{a} \vec{b} .

Definition: The scalar projection of \overrightarrow{b} onto \overrightarrow{a} is defined to be the signed magnitude of the vector projection, which is the number $|\overrightarrow{b}| \cos \theta$, where θ is the angle between \overrightarrow{a} and \overrightarrow{b} .

<u>Notation</u>: The notation for the scalar projection of \overrightarrow{b} onto \overrightarrow{a} is comp \overrightarrow{a} \overrightarrow{b} .

<u>Formula</u>: The scalar projection of \overrightarrow{b} onto \overrightarrow{a} :

$$\operatorname{comp} \overrightarrow{a} \overrightarrow{b} = \frac{(\overrightarrow{a} \cdot \overrightarrow{b})}{|\overrightarrow{a}|}$$

<u>Formula</u>: The vector projection of \overrightarrow{b} onto \overrightarrow{a} :

$$\operatorname{proj} \overrightarrow{a} \overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}|^2} \overrightarrow{a}$$

Exercise 7. Find the vector projection of $\overrightarrow{u} = 6\overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ onto $\overrightarrow{v} = \overrightarrow{i} - 2\overrightarrow{j} - 2\overrightarrow{k}$ and the scalar projection of \overrightarrow{u} in the direction of \overrightarrow{v} . (Hass Sec 12.3 Ex 5)

Exercise 8. Find the vector projection of a force $\overrightarrow{F} = 5\overrightarrow{i} + 2\overrightarrow{j}$ onto $\overrightarrow{v} = \overrightarrow{i} - 3\overrightarrow{j}$ and the scalar component of \overrightarrow{F} in the direction of \overrightarrow{v} . (Hass Sec 12.3 Ex 6)

Class Exercise 6. Find the scalar and vector projections of \overrightarrow{b} onto \overrightarrow{a} . (a) $\overrightarrow{a} = \langle 1, 4 \rangle$, $\overrightarrow{b} = \langle 2, 3 \rangle$ (b) $\overrightarrow{a} = \langle -2, 3, -6 \rangle$, $\overrightarrow{b} = \langle 5, -1, 4 \rangle$ (c) $\overrightarrow{a} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, $\overrightarrow{b} = \overrightarrow{i} - \overrightarrow{j} + \overrightarrow{k}$ (#40,42,44)

Homework: 3-55 (every 4th)