Section 12.3

Definition: If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then the dot product of \vec{a} and \vec{b} is the number of $\vec{a} \cdot \vec{b}$ given by

$$
\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Exercise 1. Find $\vec{a} \cdot \vec{b}$.
(a) $\vec{a}=\langle 2,4,-3\rangle, \vec{b}=\langle-1,5,2\rangle$.
(b) $\vec{a}=3 \vec{i}-2 \vec{j}+\vec{k}, \vec{b}=4 \vec{i}+5 \vec{j}-2 \vec{k}$ (Swokowski Sec 14.3 Example 1)

Class Exercise 1. Find $\vec{a} \cdot \vec{b} \cdot(\# 2-8$ even $)$
(a) $\vec{a}=<-2,3\rangle, \vec{b}=<0.7,1.2\rangle$
(b) $\vec{a}=\langle 6,-2,3\rangle, \vec{b}=\langle 2,5,-1\rangle$
(c) $\vec{a}=\langle p,-p, 2 p\rangle, \vec{b}=\langle 2 q, q,-q\rangle$
(d) $\vec{a}=3 \vec{i}+2 \vec{j}-\vec{k}, \vec{b}=4 \vec{i}+5 \vec{k}$

Properties of the Dot Product: If \vec{a}, \vec{b}, and \vec{c} are vectors in V_{3} and c is a scalar, then

1. $\vec{a} \cdot \vec{a}=|\vec{a}|^{2}$
2. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
3. $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
4. $(c \vec{a}) \cdot \vec{b}=c(\vec{a} \cdot \vec{b})=\vec{a} \cdot(c \vec{b})$
5. $\overrightarrow{0} \cdot \vec{a}=0$

Theorem: If θ is the angle between the vectors \vec{a} and \vec{b}, then

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

Corollary: If θ is the angle between the nonzero vectors \vec{a} and \vec{b}, then

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Exercise 2. Find the angle between the vectors $\vec{a}=<4,-3,1>$ and $\vec{b}=<-1,-2,2\rangle$. (Swok Sec 14.3 Example 2)

Exercise 3. Find the angle between $\vec{u}=\vec{i}-2 \vec{j}-2 \vec{k}$ and $\vec{v}=6 \vec{i}+3 \vec{j}+2 \vec{k}$
(Hass Sec 12.3 Ex 2).

Exercise 4. Find the angle θ in the triangle $A B C$ determined by the vertices $A=(0,0)$, $B=(3,5)$, and $C=(5,2)$. (Hass Sec 12.3 Ex 3$)$

Class Exercise 2. Find the angle between the vectors.
(a) $\vec{a}=\langle-2,5\rangle$ and $\vec{b}=\langle 5,12\rangle$
(b) $\vec{a}=\langle 4,0,2\rangle$ and $\vec{b}=\langle 2,-1,0\rangle$
(c) $\vec{a}=\vec{i}+2 \vec{j}-2 \vec{k}$ and $\vec{b}=4 \vec{i}-3 \vec{k}(\# 16,18,20)$

Class Exercise 3. Find, correct to the nearest degree, the three angles of the triangle with given vertices $A(1,0,-1), B(3,-2,0)$, and $C(1,3,3)$. (\#22)

Definition: Two nonzero vectors \vec{a} and \vec{b} are called perpendicular or orthogonal if the angle between them is 90°.

Theorem: Two vectors \vec{a} and \vec{b} are orthogonal if and only if $\vec{a} \cdot \vec{b}=0$.
Exercise 5. Prove that the vectors are orthogonal.
(a) \vec{i}, \vec{j}
(b) $3 \vec{i}-7 \vec{j}+2 \vec{k}, 10 \vec{i}+4 \vec{j}-\vec{k}$ (Swok Sec 14.3 Exercise 3)

Class Exercise 4. Determine whether the given vectors are orthogonal, parallel, or neither.
(a) $\vec{u}=\langle-3,9,6\rangle, \vec{v}=\langle 4,-12,-8\rangle$
(b) $\vec{u}=\vec{i}-\vec{j}+2 \vec{k}, \vec{v}=2 \vec{i}-\vec{j}+\vec{k}$
(c) $\vec{u}=\langle a, b, c\rangle, \vec{v}=\langle-b, a, 0\rangle(\# 24)$

Definition: The direction angles of a nonzero vector $\vec{a}=<a_{1}, a_{2}, a_{3}>$ are the angles α, β, and γ that \vec{a} makes with the positive $x-, y-$, and z-axes, respectively.

Definition: The direction cosines of these direction angles are $\cos \alpha, \cos \beta$, and $\cos \gamma$.
Here are some formulas:

$$
\cos \alpha=\frac{a_{1}}{|\vec{a}|} \quad \cos \beta=\frac{a_{2}}{|\vec{a}|} \quad \cos \gamma=\frac{a_{3}}{|\vec{a}|}
$$

Exercise 6. Find the direction cosines and direction angles of the vector: $\langle 1,2,3\rangle$. (Stewart Ex 5)

Class Exercise 5. Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.)
(a) $<6,3,-2>$
(b) $\frac{1}{2} \vec{i}+\vec{j}+\vec{k}(\# 34,36)$

Definition: Suppose $\overrightarrow{P Q}$ and $\overrightarrow{P R}$ are representations of two vectors \vec{a} and \vec{b} with same initial point P. If S is the foot of the perpendicular from R to the line containing $\overrightarrow{P Q}$, then the vector with representation $\overrightarrow{P S}$ is called the vector projection of \vec{b} onto \vec{a}.

Notation: The notation for the vector projection of \vec{v} onto \vec{v} is proj $\vec{a} \vec{b}$.
Definition: The scalar projection of \vec{b} onto \vec{a} is defined to be the signed magnitude of the vector projection, which is the number $|\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b}.

Notation: The notation for the scalar projection of \vec{b} onto \vec{a} is comp $\vec{a} \vec{b}$.
Formula: The scalar projection of \vec{b} onto \vec{a} :

$$
\operatorname{comp} \vec{a} \vec{b}=\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|}
$$

Formula: The vector projection of \vec{b} onto \vec{a} :

$$
\operatorname{proj} \vec{a} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^{2}} \vec{a}
$$

Exercise 7. Find the vector projection of $\vec{u}=6 \vec{i}+3 \vec{j}+2 \vec{k}$ onto $\vec{v}=\vec{i}-2 \vec{j}-2 \vec{k}$ and the scalar projection of \vec{u} in the direction of \vec{v}. (Hass Sec 12.3 Ex 5)

Exercise 8. Find the vector projection of a force $\vec{F}=5 \vec{i}+2 \vec{j}$ onto $\vec{v}=\vec{i}-3 \vec{j}$ and the scalar component of \vec{F} in the direction of \vec{v}. (Hass Sec $12.3 \operatorname{Ex} 6$)

Class Exercise 6. Find the scalar and vector projections of \vec{b} onto \vec{a}.
(a) $\vec{a}=\langle 1,4\rangle, \vec{b}=\langle 2,3\rangle$
(b) $\vec{a}=<-2,3,-6>, \vec{b}=<5,-1,4>$
(c) $\vec{a}=\vec{i}+\vec{j}+\vec{k}, \vec{b}=\vec{i}-\vec{j}+\vec{k}(\# 40,42,44)$

Homework: 3-55 (every 4th)

