Section 12.4

Definition: If $\vec{a}=<a_{1}, a_{2}, a_{3}>$ and $\vec{b}=<b_{1}, b_{2}, b_{3}>$, then the cross product of \vec{a} and \vec{b} is the vector

$$
\vec{a} \times \vec{b}=<a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}>
$$

Definition: A determinant of order 2 is defined by

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Definition: A determinant of order 3 is defined by

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
$$

New Formula for Cross Product:

$$
\vec{a} X \vec{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

Here is another way of expressing the last product:

$$
\vec{a} X \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Theorem: The vector $\vec{a} \times \vec{b}$ is orthogonal to both \vec{a} and \vec{b}.
Exercise 1. Find the cross product $\vec{u} X \vec{v}$ and $\vec{v} X \vec{u}$ if $\vec{u}=2 \vec{i}+\vec{j}+\vec{k}$ and $\vec{v}=-4 \vec{i}+3 \vec{j}+\vec{k} .($ Hass Sec 12.4 Ex 1)

Exercise 2. Find $\vec{a} X \vec{b}$ if $\vec{a}=\langle 2,-1,6\rangle$ and $\vec{b}=\langle-3,5,1\rangle$. (Swok Sec 14.4 Ex 1)
Class Exercise 1. Find the cross product $\vec{a} X \vec{b}$ and verify that it is orthogonal to both \vec{a} and $\vec{b} .(\# 2,4,6)$
(a) $\vec{a}=\langle 1,1,-1\rangle, \vec{b}=\langle 2,4,6\rangle$
(b) $\vec{a}=\vec{j}+7 \vec{k}, \vec{b}=2 \vec{i}-\vec{j}+4 \vec{k}$
(c) $\vec{a}=t \vec{i}+\cos t \vec{j}+\sin t \vec{k}, \vec{b}=\vec{i}-\sin t \vec{j}+\cos t \vec{k}$

Definition: A vector is orthogonal to a plane if it is orthogonal to all of the in-plane vectors.
Exercise 3. Find a vector perpendicular to the plane of $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$. (Hass Sec 12.4 Ex 2)

Theorem: If θ is the angle between \vec{a} and \vec{b} (so $0 \leq \theta \leq \pi$), then $|\vec{a} X \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$.

Corollary: Two nonzero vectors \vec{a} and \vec{b} are parallel if and only if $\vec{a} \times \vec{b}=\overrightarrow{0}$.
Geometric Fact: The length of the cross product $\vec{a} X \vec{b}$ is equal to the area of the parallelogram determined by \vec{a} and \vec{b}.

Exercise 4. Find the area of the triangle with vertices $P(1,-1,0), Q(2,1,-1)$, and $R(-1,1,2)$. (Hass Sec 12.4 Ex 3)

Exercise 5. Find the area of the triangle determined by $P(4,-3,1), Q(6,-4,7)$, and $R(1,2,2)$. (Swok Sec 14.4 Ex 2)

Class Exercise 2. (a) Find a nonzero vector orthogonal to the plane through the points P, Q, and R, and (b) find the area of triangle $P Q R$.
(i) $P(0,0,-3), Q(4,2,0)$, and $R(3,3,1)(\# 30)$
(ii) $P(-1,3,1), Q(0,5,2)$, and $R(4,3,-1)(\# 32)$

Cross Products of Standard Basis Vectors

$$
\begin{gathered}
\vec{i} X \vec{j}=\vec{k} \quad \vec{j} X \vec{k}=\vec{i} \quad \vec{k} X \vec{i}=\vec{j} \\
\vec{j} X \vec{i}=-\vec{k} \quad \vec{k} \times \vec{j}=-\vec{i} \quad \vec{i} \times \vec{k}=-\vec{j}
\end{gathered}
$$

Properties of the Cross Product: If \vec{a}, \vec{b}, and \vec{c} are vectors are c is a scalar, then

1. $\vec{a} \times \vec{b} \underset{\vec{b}}{\bar{b}} \times \vec{a}$
2. $(c \vec{a}) X \vec{b}=c(\vec{a} X \vec{b})=\vec{a} X(c \vec{b})$
3. $\vec{a} X(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$
4. $(\vec{a}+\vec{b}) \times \vec{c}=\vec{a} \times \vec{c}+\vec{b} \times \vec{c}$
5. $\vec{a} \cdot(\vec{b} X \vec{c})=(\vec{a} X \vec{b}) \cdot \vec{c}$
6. $\vec{a} X(\vec{b} X \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$

Definition: The product $\vec{a} \cdot(\vec{b} X \vec{c})$ is called the scalar triple product of the vectors \vec{a}, \vec{b}, and \vec{c}.

Formula: The volume of the parallelepiped determined by the vectors \vec{a}, \vec{b}, and \vec{c} is the magnitude of their scalar triple product:

$$
V=|\vec{a} \cdot(\vec{b} X \vec{c})|
$$

We can write the scalar triple product as a determinant:

$$
\vec{a} \cdot(\vec{b} X \vec{c})=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Exercise 6. Find the volume of the box determined by $\vec{u}=\vec{i}+2 \vec{j}-\vec{k}, \vec{v}=-2 \vec{i}+3 \vec{k}$, and $\vec{w}=7 \vec{j}-4 \vec{k}$. (Hass Sec 12.4 Ex 6$)$

Class Exercise 3. Find the volume of the parallelepiped determined by the vectors \vec{a}, \vec{b}, and $\vec{c}: \vec{a}=\vec{i}+\vec{j}, \vec{b}=\vec{j}+\vec{k}, \vec{c}=\vec{i}+\vec{j}+\vec{k}(\# 34)$

Class Exercise 4. For the points $P(3,0,1), Q(-1,2,5), R(5,1,-1)$, and $S(0,4,2)$, find the volume of the parallelepiped with adjacent edges $P Q, P R$, and $P S$. (\#36)
Fact: If $V=\left|\vec{a} \cdot\left(\begin{array}{ll}\vec{b} & X \\ c\end{array}\right)\right|=0$, then the vectors are coplanar.
Class Exercise 5. Use the scalar triple product to determine whether the points $A(1,3,2)$, $B(3,-1,6), C(5,2,0)$, and $D(3,6,-4)$ lie in the same plane. (\#38)

Homework: 3-43 (every 4th)

