Section 12.5

A line L in three-dimensional space is determined when we know a point $P_0(x_0, y_0, z_0)$ on L and the direction of L. In three dimensions the direction of a line is conveniently described by a vector, so we let \overrightarrow{v} be a vector parallel to L. Let P(x, y, z) be an arbitrary point on L and let $\overrightarrow{r_0}$ and \overrightarrow{r} be the position vectors of P_0 and P (that is, they have representations $\overrightarrow{OP_0}$ and \overrightarrow{OP}). If \overrightarrow{a} is the vector with representation $\overrightarrow{P_0P}$, then the Triangle Law for vector addition gives $\overrightarrow{r} = \overrightarrow{r_0} + \overrightarrow{a}$. But, since \overrightarrow{a} and \overrightarrow{v} are parallel vectors, there is a scalar t such that $\overrightarrow{a} = t \overrightarrow{v}$. Thus,

$$\overrightarrow{r} = \overrightarrow{r_0} + t \overrightarrow{v},$$

which is a **vector equation** of L.

Exercise 1. Find a vector equation for the line that passes through (1, 0, -2) and is parallel to the vector <4,2,-1>.

Definition: Two vectors are **equal** if and only if corresponding components are equal. Therefore, we have the three scalar equations:

$$x = x_0 + at$$
 $y = y_0 + bt$ $z = z_0 + ct$

where $t \in \mathbb{R}$. These equations are called **parametric equations** of the line L through the point $P_0(x_0, y_0, z_0)$ and parallel to the vector $\overrightarrow{v} = \langle a, b, c \rangle$. Each value of the parameter t gives a point (x, y, z) on L.

Exercise 2. Find parametric equations for the line L through P(5, -2, 4) that is parallel to $\vec{a} = \langle \frac{1}{2}, 2, -\frac{2}{3} \rangle$. (Swok Sec 14.5 Ex 1)

Exercise 3. Find parametric equations for the line through $P_1(3, 1, -2)$ and $P_2(-2, 7, -4)$. (Swok Sec 14.5 Ex 2)

Exercise 4. Find parametric equations for the line through P(-3, 2, -3) and Q(1, -1, 4). (Hass Sec 12.5 Ex 2)

Class Exercise 1. Find a vector equation and parametric equations for the line. (a) The line through the point (6,-5,2) and parallel to the vector $< 1, 3, -\frac{2}{3} > (\#2)$ (b) The line through the point (0, 14,-10) and parallel to the line x = -1 + 2t, y = 6 - 3t, $z = 3 + 9t \ (\#4)$

Definition: The symmetric equations of L are

$$\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$$

Exercise 5. Find a symmetric form for the line through $P_1(3, 1, -2)$ and $P_2(-2, 7, -4)$. (Swok Sec 14.5 Ex 11)

Class Exercise 2. Find parametric and symmetric equations for the line.

(a) The line through the origin and the point (4, 3, -1). (#6)

(b) The line through the points (1.0, 2.4, 4.6) and (2.6, 1.2, 0.3). (#8) (c) The line through (2,1,0) and perpendicular to both $\vec{i} + \vec{j}$ and $\vec{j} + \vec{k}$ (#10)

Formula: The line segment from $\overrightarrow{r_0}$ to $\overrightarrow{r_1}$ is given by the vector equation

$$\overrightarrow{r'}(t) = (1-t)\overrightarrow{r_0} + t\overrightarrow{r_1} \qquad 0 \le t \le 1.$$

Exercise 6. Parametrize the line segment joining the points P(-3, 2, -3) and Q(1, -1, 4). (Hass Sec 12.5 Ex 3)

Class Exercise 3. Find parametric equations for the line segment from (10,3,1) to (5,6,-3). (#18)

Definition: **Skew lines** are lines that do not intersect and are not parallel.

Exercise 7. Show that the lines L_1 and L_2 with parametric equations: x = 1 + t y = -2 + 3t z = 4 - t

x = 2s y = 3 + s z = -3 + 4s

are skew. (Stew Ex 10)

Class Exercise 4. Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting. If they intersect, find the points of intersection.

(a) $L_1: x = 5 - 12t, y = 3 + 9t, z = 1 - 3t, L_2: x = 3 + 8s, y = -6s, z = 7 + 2s$ (#20) (b) $L_1: \frac{x}{1} = \frac{y-1}{-1} = \frac{z-2}{3}, L_2: \frac{x-2}{2} = \frac{y-3}{-2} = \frac{z}{7}$ (#22)

Definition: A plane in space is determined by a point $P_0(x_0, y_0, z_0)$ in the plane and a vector \vec{n} that is orthogonal to the plane. This orthogonal vector \vec{n} is called a **normal vector**.

Definition: A vector equation of the plane is

$$\overrightarrow{n} \cdot (\overrightarrow{r} - \overrightarrow{r_0}) = 0.$$

Definition: A scalar equation of the plane through point $P_0(x_0, y_0, z_0)$ with normal vector $\vec{n} = \langle a, b, c \rangle$ is

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

Exercise 8. Find an equation for the plane through $P_0(-3,0,7)$ perpendicular to $\overrightarrow{n} = 5\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$. (Hass Sec 12.5 Ex 6)

Exercise 9. Find a equation of the plane through the point (5, -2, 4) with normal vector $\overrightarrow{a} = \langle 1, 2, 3 \rangle$. (Swok Sec 14.5 Ex 5)

Exercise 10. Find an equation for the plane through A(0,0,1), B(2,0,0), and C(0,3,0). (Hass Sec 12.5 Ex 7)

Class Exercise 5. Find an equation of the plane. (#24-36 even)

(a) The plane through the point (5,3,5) and with the normal vector $2\vec{i} + \vec{j} - \vec{k}$

(b) The plane through the point (2,0,1) and perpendicular to the line x = 3t, y = 2 - t, z = 3 + 4t

(c) The plane through the point (2,4,6) and parallel to the plane z = x + y

(d) The plane that contains the line x = 1 + t, y = 2 - t, z = 4 - 3t and is parallel to the plane 5x + 2y + z = 1

(e) The plane through the origin and the points (2,-4,6) and (5,1,3)

(f) The plane that passes through the point (1,2,3) and contains the line x = 3t, y = 1 + t, z = 2 - t

(g) The plane that passes through the point (1,-1,1) and contains the line with symmetric equations x = 2y = 3z

<u>Fact</u>: If a, b, and c are not all 0, then the linear equation ax + by + cz + d = 0 represents a plane with normal vector $\langle a, b, c \rangle$.

Definition: Two planes are **parallel** if their normal vectors are parallel.

Exercise 11. Prove that the planes 2x - 3y - z - 5 = 0 and -6x + 9y + 3z + 2 = 0 are parallel. (Swok Sec 14.5 Ex 8)

Recall that if θ is the angle between two nonzero vectors \overrightarrow{a} and \overrightarrow{b} , then

C

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$$

Definition: If two planes are not parallel, then they intersect in a straight line and **the angle between the two planes** is defined as the acute angle between their normal vectors.

Exercise 12. Find the angle between the planes 3x - 6y - 2z = 15 and 2x + y - 2z = 5. (Hass Sec 12.5 Ex 12)

Class Exercise 6. Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.

(a) 2z = 4y - x, 3x - 12y + 6z = 1 (#52) (b) 2x - 3y + 4z = 5, x + 6y + 4z = 3 (#54) (c) x + 2y + 2z = 1, 2x - y + 2z = 1 (#56)

Distance Formula: The distance *D* from a point $P_1(x_1, y_1, z_1)$ to the plane ax + by + cz + d = 0:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

Exercise 13. Find the distance from S(1, 1, 3) to the plane 3x + 2y + 6z = 6. (Hass Sec 12.5 Ex 11)

Class Exercise 7. Find the distance between the point (-6, 3, 5) and the plane x - 2y - 4z = 8. (#72)

Class Exercise 8. Find the distance between the given parallel planes: 6z = 4y - 2x and 9z = 1 - 3x + 6y. (#74)

Homework: 3-71 (every 4th), 73