Section 12.5

A line L in three-dimensional space is determined when we know a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on L and the direction of L. In three dimensions the direction of a line is conveniently described by a vector, so we let \vec{v} be a vector parallel to L. Let $P(x, y, z)$ be an arbitrary point on L and let $\overrightarrow{r_{0}}$ and \vec{r} be the position vectors of P_{0} and P (that is, they have representations $\overrightarrow{O P_{0}}$ and $\overrightarrow{O P}$). If \vec{a} is the vector with representation $\overrightarrow{P_{0} P}$, then the Triangle Law for vector addition gives $\vec{r}=\overrightarrow{r_{0}}+\vec{a}$. But, since \vec{a} and \vec{v} are parallel vectors, there is a scalar t such that $\vec{a}=t \vec{v}$. Thus,

$$
\vec{r}=\overrightarrow{r_{0}}+t \vec{v}
$$

which is a vector equation of L.
Exercise 1. Find a vector equation for the line that passes through $(1,0,-2)$ and is parallel to the vector $\langle 4,2,-1\rangle$.

Definition: Two vectors are equal if and only if corresponding components are equal. Therefore, we have the three scalar equations:

$$
x=x_{0}+a t \quad y=y_{0}+b t \quad z=z_{0}+c t
$$

where $t \in \mathbb{R}$. These equations are called parametric equations of the line L through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\vec{v}=\langle a, b, c\rangle$. Each value of the parameter t gives a point (x, y, z) on L.
Exercise 2. Find parametric equations for the line L through $P(5,-2,4)$ that is parallel to $\vec{a}=<\frac{1}{2}, 2,-\frac{2}{3}>$. (Swok Sec 14.5 Ex 1)

Exercise 3. Find parametric equations for the line through $P_{1}(3,1,-2)$ and $P_{2}(-2,7,-4)$.
(Swok Sec 14.5 Ex 2)
Exercise 4. Find parametric equations for the line through $P(-3,2,-3)$ and $Q(1,-1,4)$.
(Hass Sec 12.5 Ex 2)

Class Exercise 1. Find a vector equation and parametric equations for the line.
(a) The line through the point $(6,-5,2)$ and parallel to the vector $<1,3,-\frac{2}{3}>(\# 2)$
(b) The line through the point $(0,14,-10)$ and parallel to the line $x=-1+2 t, y=6-3 t$, $z=3+9 t(\# 4)$

Definition: The symmetric equations of L are

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Exercise 5. Find a symmetric form for the line through $P_{1}(3,1,-2)$ and $P_{2}(-2,7,-4)$.
(Swok Sec 14.5 Ex 11)
Class Exercise 2. Find parametric and symmetric equations for the line.
(a) The line through the origin and the point $(4,3,-1) .(\# 6)$
(b) The line through the points $(1.0,2.4,4.6)$ and $(2.6,1.2,0.3) .(\# 8)$
(c) The line through $(2,1,0)$ and perpendicular to both $\vec{i}+\vec{j}$ and $\vec{j}+\vec{k}$ (\#10)

Formula: The line segment from $\overrightarrow{r_{0}}$ to $\overrightarrow{r_{1}}$ is given by the vector equation

$$
\vec{r}(t)=(1-t) \overrightarrow{r_{0}}+t \overrightarrow{r_{1}} \quad 0 \leq t \leq 1
$$

Exercise 6. Parametrize the line segment joining the points $P(-3,2,-3)$ and $Q(1,-1,4)$. (Hass Sec 12.5 Ex 3)

Class Exercise 3. Find parametric equations for the line segment from $(10,3,1)$ to $(5,6,-3)$. (\#18)
Definition: Skew lines are lines that do not intersect and are not parallel.

Exercise 7. Show that the lines L_{1} and L_{2} with parametric equations:
$x=1+t \quad y=-2+3 t \quad z=4-t$
$x=2 s \quad y=3+s \quad z=-3+4 s$
are skew. (Stew Ex 10)
Class Exercise 4. Determine whether the lines L_{1} and L_{2} are parallel, skew, or intersecting. If they intersect, find the points of intersection.
(a) $L_{1}: x=5-12 t, y=3+9 t, z=1-3 t, L_{2}: x=3+8 s, y=-6 s, z=7+2 s(\# 20)$
(b) $L_{1}: \frac{x}{1}=\frac{y-1}{-1}=\frac{z-2}{3}, L_{2}: \frac{x-2}{2}=\frac{y-3}{-2}=\frac{z}{7}(\# 22)$

Definition: A plane in space is determined by a point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ in the plane and a vector \vec{n} that is orthogonal to the plane. This orthogonal vector \vec{n} is called a normal vector.

Definition: A vector equation of the plane is

$$
\vec{n} \cdot\left(\vec{r}-\overrightarrow{r_{0}}\right)=0
$$

Definition: A scalar equation of the plane through point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=\langle a, b, c>$ is

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Exercise 8. Find an equation for the plane through $P_{0}(-3,0,7)$ perpendicular to $\vec{n}=5 \vec{i}+2 \vec{j}-\vec{k}$. (Hass Sec 12.5 Ex 6)

Exercise 9. Find a equation of the plane through the point $(5,-2,4)$ with normal vector $\vec{a}=<1,2,3>$. (Swok Sec 14.5 Ex 5)

Exercise 10. Find an equation for the plane through $A(0,0,1), B(2,0,0)$, and $C(0,3,0)$. (Hass Sec 12.5 Ex 7)

Class Exercise 5. Find an equation of the plane. (\#24-36 even)
(a) The plane through the point $(5,3,5)$ and with the normal vector $2 \vec{i}+\vec{j}-\vec{k}$
(b) The plane through the point $(2,0,1)$ and perpendicular to the line $x=3 t, y=2-t$, $z=3+4 t$
(c) The plane through the point $(2,4,6)$ and parallel to the plane $z=x+y$
(d) The plane that contains the line $x=1+t, y=2-t, z=4-3 t$ and is parallel to the plane $5 x+2 y+z=1$
(e) The plane through the origin and the points $(2,-4,6)$ and $(5,1,3)$
(f) The plane that passes through the point $(1,2,3)$ and contains the line $x=3 t, y=1+t$, $z=2-t$
(g) The plane that passes through the point $(1,-1,1)$ and contains the line with symmetric equations $x=2 y=3 z$

Fact: If a, b, and c are not all 0 , then the linear equation $a x+b y+c z+d=0$ represents a plane with normal vector $\langle a, b, c\rangle$.

Definition: Two planes are parallel if their normal vectors are parallel.
Exercise 11. Prove that the planes $2 x-3 y-z-5=0$ and $-6 x+9 y+3 z+2=0$ are parallel. (Swok Sec 14.5 Ex 8)
Recall that if θ is the angle between two nonzero vectors \vec{a} and \vec{b}, then

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Definition: If two planes are not parallel, then they intersect in a straight line and the angle between the two planes is defined as the acute angle between their normal vectors.

Exercise 12. Find the angle between the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
(Hass Sec 12.5 Ex 12)

Class Exercise 6. Determine whether the planes are parallel, perpendicular, or neither. If neither, find the angle between them.
(a) $2 z=4 y-x, 3 x-12 y+6 z=1$ (\#52)
(b) $2 x-3 y+4 z=5, x+6 y+4 z=3(\# 54)$
(c) $x+2 y+2 z=1,2 x-y+2 z=1(\# 56)$

Distance Formula: The distance D from a point $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $a x+b y+c z+d=0$:

$$
D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

Exercise 13. Find the distance from $S(1,1,3)$ to the plane $3 x+2 y+6 z=6$. (Hass Sec 12.5 Ex 11)

Class Exercise 7. Find the distance between the point $(-6,3,5)$ and the plane $x-2 y-4 z=8$. $(\# 72)$

Class Exercise 8. Find the distance between the given parallel planes: $6 z=4 y-2 x$ and $9 z=1-3 x+6 y$. (\#74)

Homework: 3-71 (every 4th), 73

