Section 12.6

Definition: The curves of intersection of the surface with planes parallel to the coordinate planes are called traces.

Exercise 1. Describe and sketch the surface: $y=4 x^{2}+9 z^{2}$. (Metzler)
Definition: A cylinder is a surface that consists of all lines that are parallel to a given line and pass through a given plane curve.
Exercise 2. Sketch the surface: $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$.
Class Exercise 1. Describe and sketch the surface. (\#4, 6, 8)
(a) $4 x^{2}+y^{2}=4$
(b) $y=z^{2}$
(c) $z=\sin y$.

Definition: A quadric surface is a graph of a second-degree equation in three variables x, y, and z. The most general such equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

where $A, B, C, \ldots \ldots ., J$ are constants.
Definition: An ellipsoid is a surface where all the traces are ellipses. Here is the equation of an ellipse:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Exercise 3. Draw an ellipsoid. (Hutchings 1.4.3)
Definition: An elliptic paraboloid is a surface where all the horizontal traces are ellipses and all the vertical traces are parabolas. Here is the equation of an elliptic paraboloid:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Exercise 4. Draw an elliptic paraboloid. (Hutchings 1.4.4)
Definition: A hyperbolic paraboloid is a surface where all the horizontal traces are hyperbolas and all the vertical traces are parabolas. Here is the equation of a hyperbolic paraboloid:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Exercise 5. Draw a hyperbolic paraboloid. (Hutchings 1.4.5)
Definition: A cone is a surface where all the horizontal traces are ellipses and vertical traces in the planes $x=\overline{k \text { and }} y=k$ are hyperbolas if $k \neq 0$ but are pairs of lines if $k=0$. Here is the equation of a cone:

$$
\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Exercise 6. Draw a cone. (Hutchings 1.4.4)
Definition: A hyperboloid of one sheet is a surface where all the horizontal traces are ellipses and vertical traces are hyperbolas. Here is an equation of a hyperboloid of one sheet:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Definition: A hyperboloid of two sheets is a surface where horizontal traces in $z=k$ are ellipses if $k>c$ or $k<-c$ and vertical traces are hyperbolas. The equation of a hyperboloid of two sheets:

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Exercise 7. Draw a hyperboloid of one sheet and a hyperboloid of two sheets. (Hutchings 1.4.4)
Class Exercise 2. Use traces to sketch and identify the surface. (\#12-20 even)
(a) $9 x^{2}-y^{2}+z^{2}=0$
(b) $25 x^{2}+4 y^{2}+z^{2}=100$
(c) $4 x^{2}+9 y^{2}+z=0$
(d) $4 x^{2}-16 y^{2}+z^{2}=16$
(e) $x=y^{2}-z^{2}$

Exercise 8. Identify and sketch the surface $4 x^{2}-y^{2}+2 z^{2}+4=0$. (Stew Sec 12.6 Ex 7)
Exercise 9. Classify the quadratic surface $x^{2}+2 z^{2}-6 x-y+10=0$. (Stew Sec $12.6 \operatorname{Ex} 8$)

Class Exercise 3. Reduce the equation to one of the standard forms, classify the surface, and sketch it. (\#30-36 even).
$\begin{array}{ll}\text { (a) } 4 x^{2}-y+2 z^{2}=0 & \text { (b) } y^{2}=x^{2}+4 z^{2}+4\end{array}$
(c) $4 y^{2}+z^{2}-x-16 y-4 z+20=0$
(d) $x^{2}-y^{2}+z^{2}-2 x+2 y+4 z+2=0$

Homework: 3, 7, 13-37 (every 4th), 45, 47

