Section 13.1

Definition: A vector-valued function is simply a function whose domain is a set of real numbers and whose range is a set of vectors.

Definition: If f(t), g(t), and h(t) are the components of the vector $\overrightarrow{r}(t)$, then f, g, and h are real-valued functions called the component functions of \overrightarrow{r} and we can write

$$\overrightarrow{r'}(t) = \langle f(t), g(t), h(t) \rangle.$$

Definition: The limit of a vector function $\overrightarrow{r}(t)$ is defined by taking the limits of its component functions as follows. If $\overrightarrow{r} = \langle f(t), g(t), h(t) \rangle$, then

$$\lim_{t \to a} \overrightarrow{r}(t) = < \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) >$$

provided the limits of the component functions exist.

Exercise 1. Find $\lim_{t\to 2} (t^2 \overrightarrow{i} + 3t \overrightarrow{j} + 5 \overrightarrow{k})$. (Swok 15.2 Illustration)

Class Exercise 1. Find the limit. (#4,6)(a) $\lim_{t\to 1} \left(\left(\frac{t^2-t}{t-1} \right) \overrightarrow{i} + \sqrt{t+8} \overrightarrow{j} + \frac{\sin(\pi t)}{\ln t} \overrightarrow{k} \right)$ (b) $\lim_{t\to\infty} < te^{-t}, \frac{t^3+t}{2t^3-1}, t \sin \frac{1}{t} >$

Definition: A vector function \overrightarrow{r} is **continuous at** a if

$$\lim_{t \to a} \overrightarrow{r}(t) = \overrightarrow{r}(a).$$

Definition: Suppose that f, g, and h are continuous real-valued functions on an interval I. Then the set C of all points (x, y, z) in space, where

$$x = f(t)$$
 $y = g(t)$ $z = h(t)$

and t varies throughout the interval I, is called the **space curve**. The equations are called **parametric equations of** C and t is called a parameter.

Exercise 2. Let $\overrightarrow{r}(t) = a \cos t \overrightarrow{i} + a \sin t \overrightarrow{j} + bt \overrightarrow{k}$ for $t \ge 0$, and positive constants a and b. Sketch the curve C determined by $\overrightarrow{r}(t)$, and indicate the orientation. (Swok Sec 15.1 Ex 4)

Exercise 3. Let $\overrightarrow{r}(t) = 2t\overrightarrow{i} + (8-2t^2)\overrightarrow{j}$ for $-2 \le t \le 2$. Sketch the curve C determined by $\overrightarrow{r}(t)$, and indicate the orientation. (Swok Sec 15.1 Ex 5)

Exercise 4. Let $\overrightarrow{r'}(t) = (\frac{1}{2}t\cos t)\overrightarrow{i} + (\frac{1}{2}t\sin t)\overrightarrow{j}$ for $0 \le t \le 3\pi$. (Swok Sec 15.1 Ex 6) (a) Sketch the curve determined by $\overrightarrow{r'}(t)$, and indicate the orientation. (b) Sketch $\overrightarrow{r}(6)$.

Class Exercise 2. Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases. (#8-14 even) (a) $\overrightarrow{r}(t) = \langle t^3, t^2 \rangle$ (b) $\overrightarrow{r}(t) = \langle \sin \pi t, t, \cos \pi t \rangle$ (c) $\overrightarrow{r}(t) = t^2 \overrightarrow{i} + t \overrightarrow{j} + 2 \overrightarrow{k}$ (d) $\overrightarrow{r}(t) = \cos t \overrightarrow{i} - \cos t \overrightarrow{j} + \sin t \overrightarrow{k}$

Exercise 5. Find a vector function that represents the curve of intersection of the cylinder $x^{2} + y^{2} = 1$ and the plane y + z = 2. (Stew 13.1 Ex 6)

Class Exercise 3. Find a vector function that represents the curve of intersection of the two surfaces. (#40, 42, 44).

(a) The cylinder $x^2 + y^2 = 4$ and the surface z = xy

(b) The paraboloid $z = 4x^2 + y^2$ and the parabolic cylinder $y = x^2$ (c) The semiellipsoid $x^2 + y^2 + 4z^2 = 4$, $y \ge 0$, and the cylinder $x^2 + z^2 = 1$

Homework: 3, 7, 13, 19, 21, 27, 35, 39, 49-53 ODD