## Section 13.4

Definition: Suppose that the position vector of a particle is $\vec{r}(t)$. The velocity vector $\vec{v}(t)$ at time $t$ is

$$
\vec{v}(t)=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}=\vec{r}^{\prime}(t) .
$$

Definition: The speed of the particle at time $t$ is the magnitude of the velocity vector, that is,

$$
|\vec{v}(t)|
$$

Definition: The acceleration of a particle is defined as the derivative of the velocity:

$$
\vec{a}(t)=\vec{v}^{\prime}(t)=\vec{r}^{\prime \prime}(t) .
$$

Exercise 1. The position vector of a point $P$ moving in an $x y$-plane is

$$
\vec{r}(t)=\left(t^{2}+t\right) \vec{i}+t^{3} \vec{j} \text { for } 0 \leq t \leq 2
$$

(a) Find the velocity and acceleration of $P$ at time $t$.
(b) Sketch the path $C$ of the point, together with $\vec{v}(1)$ and $\vec{a}(1)$. (Swok Sec 15.3 Ex 1)

Class Exercise 1. Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of $t$. (\#4,6,8)
(a) $\vec{r}(t)=<2-t, 4 \sqrt{t}>, t=1$
(b) $\vec{r}(t)=e^{t} \vec{i}+e^{2 t} \vec{j}, t=0$
(c) $\vec{r}(t)=t \vec{i}+2 \cos t \vec{j}+\sin t \vec{k}, t=0$.

## Ideal Projectile Motion Equation:

The parametric equations of the trajectory of a projectile are:

$$
\vec{r}(t)=\left(v_{0} \cos \alpha\right) t \vec{i}+\left(\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}\right) \vec{j}
$$

where $v_{0}$ is the initial velocity, $\alpha$ is the angle at which the projectile is launched, and $g$ is the gravitational constant.

The horizontal distance $d$ traveled by the projectile is

$$
d=\frac{v_{0}^{2} \sin 2 \alpha}{g} .
$$

Exercise 2. A projectile is fired from the origin over horizontal ground at an initial speed of 500 $\mathrm{m} / \mathrm{sec}$ and a launch angle of $60^{\circ}$. Where will the projectile be 10 sec later?

Class Exercise 2. A gun is fired with angle of elevation $30^{\circ}$. What is the muzzle speed if the maximum height of the shell is 500 m ? (\#26)

Class Exercise 3. A batter hits a baseball 3 ft above the ground toward the center field fence, which is 10 ft high and 400 ft from home plate. The ball leaves the bat with speed $115 \mathrm{ft} / \mathrm{s}$ at an angle $50^{\circ}$ above the horizontal. Is it a home run? (In other words, does the ball clear the fence?) (\#28)
Formula: The tangential component of acceleration is: $a_{T}=\frac{\vec{r}^{\prime}(t) \cdot \vec{r}^{\prime \prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}$
Formula: The normal component of acceleration is: $a_{N}=\left\lvert\, \frac{\vec{r}^{\prime}(t) X \vec{r}^{\prime \prime}(t) \mid}{\left|\vec{r} \vec{r}^{\prime}(t)\right|}\right.$.
Exercise 3. The position vector of a moving point at time $t$ is $\vec{r}(t)=t^{2} \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}$ for $1 \leq t \leq 4$. Find the tangential and normal components of acceleration at time $t$. (Stew Ex 7)

Class Exercise 4. Find the tangential and normal components of the acceleration vector. (\#38, 40, 42)
(a) $\vec{r}(t)=(1+t) \vec{i}+\left(t^{2}-2 t\right) \vec{j}$
(b) $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+3 t \vec{k}$
(c) $\vec{r}(t)=t \vec{i}+\cos ^{2} t \vec{j}+\sin ^{2} t \vec{k}$

Homework: 3-27 (every 4th), 37-41 ODD

