Section 14.1

Definition: A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by $f(x, y)$. The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y) \mid(x, y) \in D\}$.

Exercise 1. Let $f(x, y)=\frac{x y-5}{2 \sqrt{y-x^{2}}}$. Sketch the domain D of f. (Swok Sec 16.1 Ex 1)

Exercise 2. Find the domain of the function $g(x, y)=\sqrt{4-x^{2}-y^{2}}$. (Briggs Sec $12.2 \operatorname{Ex} 1$)

Class Exercise 1. Find and sketch the domain of the function. (\#14-20 even)
(a) $f(x, y)=\sqrt{x y} \quad$ (b) $f(x, y)=\sqrt{x^{2}-y^{2}}$
(c) $f(x, y)=\sqrt{y}+\sqrt{25-x^{2}-y^{2}}$
(d) $f(x, y)=\arcsin \left(x^{2}+y^{2}-2\right)$

Definition: If f is a function of two variables with domain D, then the graph of f is the set of all points (x, y, z) in \mathbb{R}^{2} such that $z=f(x, y)$ and (x, y) is in D.

Exercise 3. Find the domain and range of the following functions. Then sketch a graph.
(Briggs Sec 12.2 Ex 2)
(a) $f(x, y)=2 x+3 y-12$
(b) $g(x, y)=x^{2}+y^{2}$
(c) $h(x, y)=\sqrt{1+x^{2}+y^{2}}$

Class Exercise 2. Sketch the graph of the function. (\#24-30 even)
$\begin{array}{ll}\text { (a) } f(x, y)=2-x & \text { (b) } f(x, y)=e^{-y}\end{array}$
(c) $f(x, y)=1+2 x^{2}+2 y^{2}$
(d) $f(x, y)=\sqrt{4 x^{2}+y^{2}}$

Definition: The level curves of a function f of two variables are the curves with equations $f(x, y)=k$, where k is a constant (in the range of f).

Exercise 4. Graph $f(x, y)=100-x^{2}-y^{2}$ and plot the level curves $f(x, y)=0, f(x, y)=51$, $f(x, y)=75$ in the domain of f in the plane. (Hass Sec 14.1 Ex 5)

Exercise 5. If $f(x, y)=y^{2}-x^{2}$, sketch some level curves of f. (Swok Sec 16.1 Ex 4)
Exercise 6. Find and sketch the level curves of the following surfaces: (a) $f(x, y)=y-x^{2}-1$ and (b) $f(x, y)=e^{-x^{2}-y^{2}}$. (Briggs Sec 12.2 Ex 3)

Class Exercise 3. Draw a contour map of the function showing several level curves.
(\#44-50 even) (a) $f(x, y)=x^{3}-y \quad$ (b) $f(x, y)=\ln \left(x^{2}+4 y^{2}\right)$
(c) $f(x, y)=y \sec x$
(d) $f(x, y)=\frac{y}{x^{2}+y^{2}}$

Definition: A function of three variables, f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^{3}$ a unique real number denoted by $f(x, y, z)$.
Class Exercise 4. Find and sketch the domain of the function: $f(x, y, z)=\ln \left(16-4 x^{2}-4 y^{2}-z^{2}\right)$ (\#22)

Homework: 3-19 (every 4th), 25-45 (every 4th)

