Section 14.3

Let's review derivatives from single-variable calculus.
Definition: The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h},
$$

provided the limit exists.
Exercise 1. Find the derivative of $f(x)=x^{2}+3 x$.

Class Exercise 1. Find the derivative of (a) $g(x)=x^{3}+2 x^{2}-7 x+5$
(b) $h(x)=x^{4}-2 x^{2}+8 x-9$

Definition: Let $g(x)=f(x, b)$. If g has a derivative at a, then we call it the

$$
\text { partial derivative of } f \text { with respect to } x \text { at }(a, b) .
$$

Notation: The partial derivative of f with respect to x is denoted by $f_{x}(a, b)$.
Definition: The partial derivative of f with respect to x at (a, b) is

$$
f_{x}(a, b)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

Definition: The partial derivative of f with respect to y at (a, b) is

$$
f_{y}(a, b)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

Exercise 2. If $f(x, y)=x^{3} y^{2}-2 x^{2} y+3 x$, find
(a) $f_{x}(x, y)$ and $f_{y}(x, y)$
(b) $f_{x}(2,-1)$ and $f_{y}(2,-1)$. (Swok Sec 16.3 Ex 1)

Exercise 3. Find f_{x} and f_{y} as functions if

$$
f(x, y)=\frac{2 y}{y+\cos x} .(\text { Hass Sec } 14.3 \operatorname{Ex} 3)
$$

Exercise 4. Find $\partial w / \partial y$ if $w=x y^{2} e^{x y}$. (Swok Sec 16.3 Ex 2)

Class Exercise 2. Find the partial derivatives of the function. (\#16-38 even)
(a) $f(x, y)=x^{4} y^{3}+8 x^{2} y$
(b) $f_{v}(x, t)=\sqrt{x} \ln t$
(c) $z=\tan x y$
(d) $f(x, y)=\frac{x}{(x+y)^{2}}$
$\begin{array}{ll}\text { (e) } w=\frac{e^{v}}{u+v^{2}} & \text { (f) } u(r, \theta)=\sin (r \cos \theta)\end{array}$
(g) $f(x, y)=x^{y}$
(h) $F(\alpha, \beta)=\int_{\alpha}^{\beta} \sqrt{t^{3}+1} d t$
(i) $f(x, y, z)=x \sin (y-z)$
(j) $w=z e^{x y z}$
(k) $u=x^{y / z}$
(l) $\phi(x, y, z, t)=\frac{\alpha x+\beta y^{2}}{\gamma z+\delta t^{2}}$

Notations for Partial Derivatives: If $z=f(x, y)$, we write
$f_{x}(x, y)=f_{x}=\frac{\partial f}{\partial x}=\frac{\partial}{\partial x} f(x, y)=\frac{\partial z}{\partial x}=f_{1}=D_{1} f=D_{x} f$
$f_{y}(x, y)=f_{y}=\frac{\partial f}{\partial y}=\frac{\partial}{\partial y} f(x, y)=\frac{\partial z}{\partial y}=f_{2}=D_{2} f=D_{y} f$
Exercise 5. Find the values of $\partial f / \partial x$ and $\partial f / \partial y$ at the point $(4,-5)$ if

$$
f(x, y)=x^{2}+3 x y+y-1 .(\text { Hass Sec } 14.3 \operatorname{Ex} 1)
$$

Class Exercise 3. Find the indicated partial derivative. $(\# 42,44)$
(a) $f(x, y)=\arctan (y / x) ; f_{x}(2,3)$
(b) $f(x, y, z)=\sqrt{\sin ^{2} x+\sin ^{2} y+\sin ^{2} z} f_{z}(0,0, \pi / 4)$

Exercise 6. Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$. (\#48) $x^{2}-y^{2}+z^{2}-2 z=4$.

Class Exercise 4. Use implicit differentiation to find $\partial z / \partial x$ and $\partial z / \partial y$. (\#50) $y z+x \ln y=z^{2}$

Definition: The second partial derivatives of f are $\left(f_{x}\right)_{x},\left(f_{x}\right)_{y},\left(f_{y}\right)_{x}$, and $\left(f_{y}\right)_{y}$.
Notation: $\left(f_{x}\right)_{x}=f_{x x}=f_{11}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} z}{\partial x^{2}}$
$\left(f_{x}\right)_{y}=f_{x y}=f_{12}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} z}{\partial y \partial x}$
$\left(f_{y}\right)_{x}=f_{y x}=f_{21}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} z}{\partial x \partial y}$
$\left(f_{y}\right)_{y}=f_{y y}=f_{22}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} z}{\partial y^{2}}$
Exercise 7. Find the four second partial derivatives of $f(x, y)=3 x^{4} y-2 x y+5 x y^{3}$. (Briggs Sec 12.4 Ex 4)

Class Exercise 5. Find all the second partial derivatives. (\#54, 56, 58)
(a) $f(x, y)=\sin ^{2}(m x+n y)$
(b) $v=\frac{x y}{x-y}$
(c) $v=e^{x e^{y}}$

Clairaut's Theorem: Suppose f is defined on a disk D that contains the point (a, b). If the functions $f_{x y}$ and $f_{y x}$ are both continuous on D, then

$$
f_{x y}(a, b)=f_{y x}(a, b)
$$

Exercise 8. Verify that the conclusion of Clairaut's Theorem holds.

$$
f(x, y)=x^{3} y^{2}-2 x^{2} y+3 x .(\text { Swok Sec 16.3 Ex } 4)
$$

Class Exercise 6. Verify that the conclusion of Clairaut's Theorem holds, that is, $u_{x y}=u_{y x}$. (\#60, 62)
(a) $u=e^{x y} \sin y$
(b) $u=\ln (x+2 y)$

Exercise 9. Find f_{x}, f_{y}, and f_{z} when

$$
f(x, y, z)=e^{-x y} \cos z .(\text { Briggs Sec 12.4 Ex } 5)
$$

Class Exercise 7. Find the indicated partial derivatives. (\#64-70 even)
(a) $f(x, y)=\sin (2 x+5 y) ; f_{y x y}$
(b) $g(r, s, t)=e^{r} \sin (s t) ; g_{r s t}$
(c) $z=u \sqrt{v-w} ; \frac{\partial^{3} z}{\partial u \partial v \partial w}$
(d) $u=x^{a} y^{b} z^{c} ; \frac{\partial^{6} u}{\partial x \partial y^{2} \partial z^{3}}$

Homework: 5, 7, 9, 13, 19-39 (every 4th), 41-61 (every 4th), 67

