Section 14.5

We start by reviewing the Chain Rule from single-variable calculus.

<u>Chain Rule</u>: If y = f(u), u = g(x), and the derivatives dy/du and du/dx both exist, then the composite function defined by y = f(g(x)) has a derivative given by

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = f'(u)g'(x) = f'(g(x))g'(x)$$

Exercise 1. Find f'(x) if $f(x) = (7x+3)^4$.

Class Exercise 1. Find dy/dx. (a) $y = \sin(7 - 5x)$ (b) $y = \tan(2x - x^2)$

We now give the Chain Rule for more than one variable.

Chain Rule (Case 1): Suppose that z = f(x, y) is a differentiable function of x and y, where $\overline{x = g(t)}$ and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt}$$

Exercise 2. Use a chain rule to find dw/dt if

$$w = x^{2} + yz$$
, with $x = 3t^{2} + 1$, $y = 2t - 4$, $z = t^{3}$.

(Swok Sec 16.5 Ex 3)

Class Exercise 2. Use the Chain Rule to find dz/dt or dw/dt. (#2,4,6) (a) $z = \cos(x + 4y), x = 5t^4, y = 1/t$ (b) $z = \tan^{-1}(y/x), x = e^t, y = 1 - e^{-t}$ (c) $w = \ln(\sqrt{x^2 + y^2 + z^2}), x = \sin t, y = \cos t, z = \tan t$

Chain Rule (Case 2): Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s,t) and y = h(s,t) are differentiable functions of s and t. Then,

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

Exercise 3. Use a chain rule to find $\partial w/\partial p$ and $\partial w/\partial q$ if

$$w = r^3 + s^2$$
, with $r = pq^2$, $s = p^2 \sin q$.

(Swok Sec 16.5 Ex 1)

Class Exercise 3. Use the Chain Rule to find $\partial z/\partial s$ and $\partial z/\partial t$. (#8, 10, 12) (a) $z = \arcsin(x-y), x = s^2 + t^2, y = 1 - 2st$ (b) $z = e^{x+2y}, x = s/t, y = t/s$ (c) $z = \tan(u/v), u = 2s + 3t, v = 3s - 2t$

Chain Rule (General Version): Suppose that u is a differentiable function of the n variables $x_1, x_2, ..., x_n$ and each x_j is a differentiable function of the m variables $t_1, t_2, ..., t_m$. Then u is a function of $t_1, t_2, ..., t_m$ and

 $\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_i}$

for each i = 1, 2, ..., m.

Exercise 4. Use a chain rule to find $\partial w/\partial z$ if

$$w = r^2 + sv + t^3$$
, with $r = x^2 + y^2 + z^2$, $s = xyz$, $v = xe^y$, $t = yz^2$.

(Swok Sec 16.3 Ex 2)

Class Exercise 4. Use the Chain Rule to find the indicated partial derivatives. (#22,24, 26) (a) $T = \frac{v}{2u+v}$, $u = pq\sqrt{r}$, $v = p\sqrt{q}r$; $\frac{\partial T}{\partial p}$, $\frac{\partial T}{\partial q}$, $\frac{\partial T}{\partial r}$, when p = 2, q = 1, r = 4(b) $p = \sqrt{u^2 + v^2 + w^2}$, $u = ye^x$, $v = xe^y$, $w = e^{xy}$; $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, when x = 0 and y = 2(c) $u = xe^{ty}$, $x = \alpha^2\beta$, $y = \beta^2\gamma$, $t = \gamma^2\alpha$; $\frac{\partial u}{\partial \alpha}$, $\frac{\partial u}{\partial \beta}$, $\frac{\partial u}{\partial \gamma}$, when $\alpha = -1$, $\beta = 2$, $\gamma = 1$

Implicit Function Theorem I: We suppose that an equation of the form F(x, y) = 0 defines y implicitly as a differentiable function of x.

$$\frac{dy}{dx} = - \frac{\partial F/\partial x}{\partial F/\partial y} = - \frac{F_x}{F_y}$$

Exercise 5. Find dy/dx if y = f(x) is determined implicitly by

 $y^4 + 3y - 4x^3 - 5x - 1 = 0.$ (Swok 16.5 Ex 5)

Class Exercise 5. Find dy/dx. (#28, 30) (a) $\cos(xy) = 1 + \sin y$ (b) $e^y \sin x = x + xy$

Implicit Function Theorem II: We suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0.

$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$$
 $\frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z}$

Exercise 6. Find $\partial z/\partial x$ and $\partial z/\partial y$ if z = f(x, y) is determined implicitly by

 $x^{2}z^{2} + xy^{2} - z^{3} + 4yz - 5 = 0.$ (Swok Sec 16.5 Ex 6)

Class Exercise 6. Find $\partial z/\partial x$ and $\partial z/\partial y$. (#32, 34) (a) $x^2 - y^2 + z^2 - 2z = 4$ (b) $yz + x \ln y = z^2$

Homework: 3, 7, 13-53 (every 4th)