Section 14.5

We start by reviewing the Chain Rule from single-variable calculus.
Chain Rule: If $y=f(u), u=g(x)$, and the derivatives $d y / d u$ and $d u / d x$ both exist, then the composite function defined by $y=f(g(x))$ has a derivative given by

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}=f^{\prime}(u) g^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x) .
$$

Exercise 1. Find $f^{\prime}(x)$ if $f(x)=(7 x+3)^{4}$.

Class Exercise 1. Find $d y / d x$.
(a) $y=\sin (7-5 x)$
(b) $y=\tan \left(2 x-x^{2}\right)$

We now give the Chain Rule for more than one variable.
Chain Rule (Case 1): Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $\overline{x=g(t)}$ and $y=h(t)$ are both differentiable functions of t. Then z is a differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t}
$$

Exercise 2. Use a chain rule to find $d w / d t$ if

$$
w=x^{2}+y z, \text { with } x=3 t^{2}+1, y=2 t-4, z=t^{3} .
$$

(Swok Sec 16.5 Ex 3)

Class Exercise 2. Use the Chain Rule to find $d z / d t$ or $d w / d t$. ($\# 2,4,6$)
(a) $z=\cos (x+4 y), x=5 t^{4}, y=1 / t$
(b) $z=\tan ^{-1}(y / x), x=e^{t}, y=1-e^{-t}$
(c) $w=\ln \left(\sqrt{x^{2}+y^{2}+z^{2}}\right), x=\sin t, y=\cos t, z=\tan t$

Chain Rule (Case 2): Suppose that $z=f(x, y)$ is a differentiable function of x and y, where $x=g(s, t)$ and $y=h(s, t)$ are differentiable functions of s and t. Then,

$$
\begin{aligned}
& \frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
& \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Exercise 3. Use a chain rule to find $\partial w / \partial p$ and $\partial w / \partial q$ if

$$
w=r^{3}+s^{2}, \text { with } r=p q^{2}, s=p^{2} \sin q .
$$

(Swok Sec 16.5 Ex 1)

Class Exercise 3. Use the Chain Rule to find $\partial z / \partial s$ and $\partial z / \partial t$. $(\# 8,10,12)$
(a) $z=\arcsin (x-y), x=s^{2}+t^{2}, y=1-2 s t$
(b) $z=e^{x+2 y}, x=s / t, y=t / s$
(c) $z=\tan (u / v), u=2 s+3 t, v=3 s-2 t$

Chain Rule (General Version): Suppose that u is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ and each x_{j} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots \ldots, t_{m}$. Then u is a function of t_{1}, t_{2}, \ldots. . t_{m} and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \cdot \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \cdot \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \cdot \frac{\partial x_{n}}{\partial t_{i}}
$$

for each $i=1,2, \ldots \ldots, m$.
Exercise 4. Use a chain rule to find $\partial w / \partial z$ if

$$
w=r^{2}+s v+t^{3}, \text { with } r=x^{2}+y^{2}+z^{2}, s=x y z, v=x e^{y}, t=y z^{2} .
$$

(Swok Sec 16.3 Ex 2)

Class Exercise 4. Use the Chain Rule to find the indicated partial derivatives. ($\# 22,24,26$)
(a) $T=\frac{v}{2 u+v}, u=p q \sqrt{r}, v=p \sqrt{q} r ; \frac{\partial T}{\partial p}, \frac{\partial T}{\partial q}, \frac{\partial T}{\partial r}$, when $p=2, q=1, r=4$
(b) $p=\sqrt{u^{2}+v^{2}+w^{2}}, u=y e^{x}, v=x e^{y}, w=e^{x y}$; $\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}$, when $x=0$ and $y=2$
(c) $u=x e^{t y}, x=\alpha^{2} \beta, y=\beta^{2} \gamma, t=\gamma^{2} \alpha$; $\frac{\partial u}{\partial \alpha}, \frac{\partial u}{\partial \beta}, \frac{\partial u}{\partial \gamma}$, when $\alpha=-1, \beta=2, \gamma=1$
$\underline{\text { Implicit Function Theorem I: We suppose that an equation of the form } F(x, y)=0 \text { defines } y}$ implicitly as a differentiable function of x.

$$
\frac{d y}{d x}=-\frac{\partial F / \partial x}{\partial F / \partial y}=-\frac{F_{x}}{F_{y}} .
$$

Exercise 5. Find $d y / d x$ if $y=f(x)$ is determined implicitly by

$$
y^{4}+3 y-4 x^{3}-5 x-1=0 .(\text { Swok } 16.5 \operatorname{Ex} 5)
$$

Class Exercise 5. Find $d y / d x$. $(\# 28,30)$
(a) $\cos (x y)=1+\sin y$
(b) $e^{y} \sin x=x+x y$

Implicit Function Theorem II: We suppose that z is given implicitly as a function $z=f(x, y)$ by an equation of the form $F(x, y, z)=0$.

$$
\frac{\partial z}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial z} \quad \frac{\partial z}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial z}
$$

Exercise 6. Find $\partial z / \partial x$ and $\partial z / \partial y$ if $z=f(x, y)$ is determined implicitly by

$$
x^{2} z^{2}+x y^{2}-z^{3}+4 y z-5=0 .(\text { Swok Sec 16.5 Ex } 6)
$$

Class Exercise 6. Find $\partial z / \partial x$ and $\partial z / \partial y$. ($\# 32,34$)
(a) $x^{2}-y^{2}+z^{2}-2 z=4$
(b) $y z+x \ln y=z^{2}$

Homework: 3, 7, 13-53 (every 4th)

