Section 14.6

Definition: The directional derivative of f at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\vec{u}=\langle a, b\rangle$ is

$$
D_{\vec{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists.
Theorem: If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\vec{u}=\langle a, b\rangle$ and

$$
D_{\vec{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b
$$

Exercise 1. Find the directional derivative $D_{\vec{u}} f(x, y)$ if

$$
f(x, y)=x^{3}-3 x y+4 y^{2}
$$

and \vec{u} is the unit vector given by $\theta=\pi / 6$. What is $\mathrm{D}_{\vec{u}} f(1,2)$? (Stew Sec 14.6 Ex 2)
Class Exercise 1. Find the directional derivative of f at the given point in the direction indicated by the angle θ. (\#4,6)
(a) $f(x, y)=x^{3} y^{4}+x^{4} y^{3},(1,1), \theta=\pi / 6$
(b) $f(x, y)=e^{x} \cos y,(0,0), \theta=\pi / 4$

Definition If f is a function of two variables x and y, then the gradient of f is the vector function ∇f defined by

$$
\nabla f(x, y)=<f_{x}(x, y), f_{y}(x, y)>=\frac{\partial f}{\partial x} \vec{i}+\frac{\partial f}{\partial y} \vec{j}
$$

Formula: The directional derivative of a differentiable function f is

$$
D_{\vec{u}} f(x, y)=\nabla f(x, y) \cdot \vec{u}
$$

Exercise 2. Let $f(x, y)=x^{2}-4 x y$. (Swok Sec 16.6 Ex 2)
(a) Find the gradient of f at the point $P(1,2)$.
(b) Use the gradient to the find the directional derivative of f at $P(1,2)$ in the direction from $P(1,2)$ to $Q(2,5)$.

Class Exercise 2. (i) Find the gradient of f.
(ii) Evaluate the gradient at the point P.
(iii) Find the rate of change of f at P in the direction of the vector $\vec{u} .(\# 8,10)$
(a) $f(x, y)=y^{2} / x, P(1,2), \vec{u}=\frac{1}{3}(2 \vec{i}+\sqrt{5} \vec{j})$
(b) $f(x, y, z)=y^{2} e^{x y z}, P(0,1,-1), \vec{u}=<\frac{3}{13}, \frac{4}{13}, \frac{12}{13}>$

Definition: The directional derivative of f at $\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of a unit vector \vec{u} $=<a, b, c>$ is

$$
D_{\vec{u}} f\left(x_{0}, y_{0}, z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b, z_{0}+h c\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{h}
$$

if this limit exists.
Definition: For a function f of three variables, the gradient vector, denoted by ∇f or grad f, is

$$
\nabla f(x, y, z)=<f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)>
$$

Formula: The directional derivative can be rewritten as

$$
D_{\vec{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \vec{u} .
$$

Exercise 3. Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $\vec{v}=2 \vec{i}-3 \vec{j}+6 \vec{k} .($ Hass Sec $14.5 \operatorname{Ex} 6)$

Class Exercise 3. Find the directional derivative of the function at the given point in the direction of the vector $\vec{v} .(\# 12,14,16)$
(a) $f(x, y)=\frac{x}{x^{2}+y^{2}},(1,2), \vec{v}=\langle 3,5\rangle$
(b) $g(r, s)=\tan ^{-1}(r s),(1,2), \vec{v}=5 \vec{i}+10 \vec{j}$
(c) $f(x, y, z)=\sqrt{x y z},(3,2,6), \vec{v}=<-1,-2,2\rangle$

Theorem: Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ is $|\nabla f(\vec{x})|$ and it occurs when \vec{u} has the same direction as the gradient vector $\nabla f(\vec{x})$.

The minimum value of the directional derivative $D_{\vec{u}} f(\vec{x})$ is $-|\nabla f(\vec{x})|$ and it occurs when \vec{u} has the opposite direction as the gradient vector $\nabla f(\vec{x})$.

Exercise 4. Let $f(x, y)=2+x^{2}+\frac{1}{4} y^{2}$. Find the direction in which $f(x, y)$ increases most rapidly at the point $P(1,2)$ and find the maximum rate of increase of f at P. (Swok Sec 16.6 Ex 3)

Class Exercise 4. Find the maximum rate of change of f at the given point and the direction in which it occurs. (\#22, 24, 26)
(a) $f(s, t)=t e^{s t},(0,2)$
(b) $f(x, y, z)=(x+y) / z,(1,1,-1)$
(c) $f(p, q, r)=\arctan (p q r),(1,2,1)$

Definition: The tangent plane to the level surface $F(x, y, z)=k$ at $P\left(x_{0}, y_{0}, z_{0}\right)$ is the plane that passes through P and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$.

Equation: The equation of the tangent plane is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Definition: The normal line to S at P is the line passing through P and perpendicular to the tangent plane.

Exercise 5. Find an equation for the tangent plane to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=12$ at the point $P_{0}(2,1, \sqrt{6})$ and illustrate graphically. (Swok Sec 16.7 Ex 1)

Exercise 6. Find an equation of the normal line to the ellipsoid $\frac{3}{4} x^{2}+3 y^{2}+z^{2}=12$ at the point $P_{0}(2,1, \sqrt{6})$. (Swok Sec 16.7 Ex 2)

Exercise 7. Let P_{0} be the point $(3,4-2)$ on the hyperboloid $16 x^{2}-9 y^{2}+36 z^{2}=144$. Find equations for the tangent plane and the normal line at P_{0}. (Swok Sec 16.7 Ex 3)

Class Exercise 5. Find equations of (a) the tangent plane and (b) the normal line to the given surface at the specified point. ($\# 42,44,46$)
(i) $y=x^{2}-z^{2},(4,7,3)$
(ii) $x y+y z+z x=5,(1,2,1)$
(iii) $x^{4}+y^{4}+z^{4}=3 x^{2} y^{2} z^{2},(1,1,1)$

Homework: 5, 11-59 (every 4th)

