Section 14.8

Exercise 1. Find the point p(x, y, z) on the plane 2x + y - z - 5 = 0 that is closest to the origin. (Hass Sec 14.8 Ex 1)

Exercise 2. Find the points on the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ that are closest to the origin. (Hass Sec 14.8 Ex 2)

<u>**Theorem</u></u>: Suppose f and g are functions of two variables that have continuous first partial derivatives, and that \nabla g \neq 0 throughout a region of the xy-plane. If f has an extremum f(x_0, y_0) subject to the constraint g(x, y) = 0, then there is a real number \lambda such that</u>**

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0).$$

Definition: The number λ is called a **Lagrange multiplier**.

Method of Lagrange Multipliers: To find the maximum and minimum values of f(x, y, z) subject to the constraint g(x, y, z) = k:

(a) Find all values of x, y, z, and λ such that

 $\nabla f(x, y, z) = \lambda \nabla g(x, y, z)$ and g(x, y, z) = k.

(b) Evaluate f at all the points (x, y, z) that result from step (a). The largest of these values is the maximum value of f; the smallest is the minimum value of f.

Exercise 3. Find the extrema of f(x, y) = xy if (x, y) is restricted to the ellipse $4x^2 + y^2 = 4$. (Swok Sec 16.9 Ex 1)

Exercise 4. Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$. (Hass Sec 14.8 Ex 4)

Class Exercise 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (#4,6)(a) f(x,y) = 3x + y; $x^2 + y^2 = 10$ (b) $f(x,y) = e^{xy}$; $x^3 + y^3 = 16$

Exercise 5. Find the volume of the largest rectangular box with faces parallel to the coordinate planes that can be inscribed in the ellipsoid $16x^2 + 4y^2 + 9z^2 = 144$. (Swok Sec 16.9 Ex 2)

Exercise 6. If $f(x, y, z) = 4x^2 + y^2 + 5z^2$, find the point on the plane 2x + 3y + 4z = 12 at which f(x, y, z) has its least value. (Swok Sec 16.9 Ex 3)

Class Exercise 2. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (#8, 10, 12) (a) $f(x, y, z) = x^2 + y^2 + z^2$; x + y + z = 12 (b) $f(x, y, z) = x^2y^2z^2$; $x^2 + y^2 + z^2 = 1$ (c) $f(x, y, z) = x^4 + y^4 + z^4$; $x^2 + y^2 + z^2 = 1$

Homework: 1-15 ODD, 27-35 ODD