Section 15.1

Let's start by reviewing integration from single-variable calculus.
Definition of a Definite Integral: If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals or equal width $\triangle x=(b-a) / n$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots \ldots$, $x_{n}(=b)$ be endpoints of these subintervals, so x_{i}^{*} lies in the i th subinterval $\left[x_{i-1}, x_{i}\right]$. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is integrable on $[a, b]$.

Exercise 1. Evaluate the integral: (a) $\int_{1}^{2}\left(4 x^{3}-3 x^{2}+2 x\right) d x \quad$ (b) $\int_{0}^{3}\left(1+6 w^{2}-10 w^{4}\right) d w$
Class Exercise 1. Evaluate the integral: (a) $\int_{-1}^{1} t(1-t)^{2} d t \quad$ (b) $\int_{1}^{2}\left(\frac{1}{x^{2}}-\frac{4}{x^{3}}\right) d x$
(c) $\int_{0}^{4}\left(3 \sqrt{t}-2 e^{t}\right) d t$
(d) $\int_{1}^{4} \frac{\sqrt{y}-y}{y^{2}} d y$

We now define integrals for two variables.
Definition: The definite integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A
$$

if this limit exists.
Volume as a Double Integral: If $f(x, y) \geq 0$, then the volume V of the solid that lies above the rectangle R and below the surface $z=f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

Exercise 2. Estimate the volume of the solid that lies above the square $R=[0,2] X[0,2]$ and below the elliptic paraboloid $z=16-x^{2}-2 y^{2}$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square $R_{i j}$. Sketch the solid and the approximating rectangular boxes. (Stew Sec 15.1 Ex 1)

Class Exercise 2. If $R=[0,4] X[-1,2]$, use a Riemann sum with $m=2, n=3$ to estimate the value of $\iint_{R}\left(1-x y^{2}\right) d A$. Take the sample points to be (a) the lower right corners and (b) the upper left corners of the rectangles. (\#2)

Midpoint Rule of Double Integrals

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \triangle A
$$

where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and \bar{y}_{j} is the midpoint of $\left[y_{j-1}, y_{j}\right]$.
Exercise 3. Use the Midpoint Rule with $m=n=2$ to estimate the value of integral $\iint_{R}\left(x-3 y^{2}\right) d A$, where $R=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}$. (Stew Section 15.1 Ex 3)

Class Exercise 3. (a) Estimate the volume of the solid that lies below the surface $z=1+x^{2}+3 y$ and above the rectangle $R=[1,2] X[0,3]$. Use a Riemann sum with $m=n=$ 2 and choose the sample points to be lower left corners.
(b) Use the Midpoint Rule to estimate the volume in part(a). (\#4)

Definition: Suppose that f is a function of two variables that is integrable on the rectangle R $=[a, b] X[c, d]$. We use the notation $\int_{c}^{d} f(x, y) d y$ to mean that x is held fixed and $f(x, y)$ is integrated with respect to y from $y=c$ to $y=d$. This procedure is called partial integration with respect to y. (Notice its similarity to partial differentiation.) Now $\int_{c}^{d} f(x, y) d y$ is a number that depends on the value of x, so it defines a function of x :

$$
A(x)=\int_{c}^{d} f(x, y) d y
$$

If we now integrate the function A with respect to x from $x=a$ to $x=b$, we get

$$
\int_{a}^{b} A(x) d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

The integral on the right side of the equation is called an iterated integral.
Exercise 4. Evaluate (a) $\int_{1}^{4} \int_{-1}^{2}\left(2 x+6 x^{2} y\right) d y d x \quad$ (b) $\int_{-1}^{2} \int_{1}^{4}\left(2 x+6 x^{2} y\right) d x d y$.
(Swok Sec 17.1 Ex 1, 2)
Class Exercise 4. Calculate the iterated integral. (\#4-14 even)
(a) $\int_{0}^{1} \int_{1}^{2}\left(4 x^{3}-9 x^{2} y^{2}\right) d y d x$
(b) $\int_{\pi / 6}^{\pi / 2} \int_{-1}^{5} \cos y d x d y$
(c) $\int_{1}^{3} \int_{1}^{5} \frac{\ln y}{x y} d y d x$
(d) $\int_{0}^{1} \int_{0}^{3} e^{x+3 y} d x d y$
(e) $\int_{0}^{1} \int_{0}^{1} x y \sqrt{x^{2}+y^{2}} d y d x$
(f) $\int_{0}^{1} \int_{0}^{1} \sqrt{s+t} d s d t$

Fubini's Theorem: If f is continuous on the rectangle $R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Special Case: Suppose that $f(x, y)=g(x) \cdot h(y)$ and $R=[a, b] X[c, d]$.

$$
\iint_{R} f(x, y) d A=\iint_{R} g(x) \cdot h(y) d A=\int_{a}^{b} g(x) d x \int_{c}^{d} h(y) d y, \text { where }
$$

$R=[a, b] X[c, d]$.
Exercise 5. Calculate $\iint_{R} f(x, y) d A$ for

$$
f(x, y)=100-6 x^{2} y \text { and } R:\{(x, y): 0 \leq x \leq 2,-1 \leq y \leq 1\}
$$

(Hass Sec 15.1 Ex 1)
Exercise 6. Evaluate $\iint_{R} y e^{x y} d A$, where $R=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq \ln 2\}$.
(Briggs Sec 13.1 Ex 4)
Class Exercise 5. Calculate the double integral. (\#16-22 even)
(a) $\iint_{R}\left(y+x y^{-2}\right) d A, R=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}$
(b) $\iint_{R} \frac{1+x^{2}}{1+y^{2}} d A, R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}$
(c) $\iint_{R}^{R} \frac{x}{1+x y} d A, R=[0,1] X[0,1]$
(d) $\iint_{R} \frac{1}{1+x+y} d A, R=[1,3] X[1,2]$

Exercise 7. Find the volume of the region bounded above by the elliptical paraboloid $z=10+x^{2}+3 y^{2}$ and below by the rectangle $R: 0 \leq x \leq 1,0 \leq y \leq 2$. (Hass Sec 15.1 Ex 2)

Exercise 8. Find the volume of the solid bounded by the surface $f(x, y)=4+9 x^{2} y^{2}$ over the rectangle $R=\{(x, y):-1 \leq x \leq 1,0 \leq y \leq 2\}$. Use both possible orders of integration.
(Briggs Sec 13.1 Ex 3)
Class Exercise 6. Sketch the solid whose volume is given by the iterated integral:

$$
\int_{0}^{1} \int_{0}^{1}\left(2-x^{2}-y^{2}\right) d y d x
$$

Class Exercise 7. Find the volume of the solid that lies under the hyperbolic paraboloid $z=3 y^{2}-x^{2}+2$ and above the rectangle $R=[-1,1] X[1,2] .(\# 26)$

Class Exercise 8. Find the volume of the solid enclosed by the surface $z=1+e^{x} \sin y$ and the planes $x= \pm 1, y=0, y=\pi$, and $z=0$. (\#28)

Class Exercise 9. Find the volume of the solid in the first octant bounded by the cylinder $z=16-x^{2}$ and the plane $y=5 .(\# 30)$
Homework: 1-33 (every 4th), 43, 47, 53

