
Section 15.1

Let’s start by reviewing integration from single-variable calculus.

Definition of a Definite Integral: If f is a function defined for a ≤ x ≤ b, we divide the
interval [a, b] into n subintervals or equal width △ x = (b − a)/n. We let x0 (= a), x1, x2, .....,
xn (= b) be endpoints of these subintervals, so x∗

i lies in the ith subinterval [xi−1, xi]. Then
the definite integral of f from a to b is∫ b

a
f(x) dx = limn→∞

∑n
i=1 f(x∗

i ) △ x

provided that this limit exists and gives the same value for all possible choices of sample points.
If it does exist, we say that f is integrable on [a, b].

Exercise 1. Evaluate the integral: (a)
∫ 2

1
(4x3 − 3x2 + 2x) dx (b)

∫ 3

0
(1 + 6w2 − 10w4) dw

Class Exercise 1. Evaluate the integral: (a)
∫ 1

−1
t(1− t)2 dt (b)

∫ 2

1
( 1
x2 − 4

x3 ) dx

(c)
∫ 4

0
(3
√
t− 2et) dt (d)

∫ 4

1

√
y−y

y2 dy

We now define integrals for two variables.

Definition: The definite integral of f over the rectangle R is∫∫
R

f(x, y) dA = limm,n→∞
∑m

i=1

∑n
j=1 f(x∗

ij , y
∗
ij) △ A

if this limit exists.

Volume as a Double Integral: If f(x, y) ≥ 0, then the volume V of the solid that lies above
the rectangle R and below the surface z = f(x, y) is

V =
∫∫
R

f(x, y) dA

Exercise 2. Estimate the volume of the solid that lies above the square R = [0, 2] X [0, 2] and
below the elliptic paraboloid z = 16 − x2 − 2y2. Divide R into four equal squares and choose
the sample point to be the upper right corner of each square Rij . Sketch the solid and the
approximating rectangular boxes. (Stew Sec 15.1 Ex 1)

Class Exercise 2. If R = [0, 4] X [−1, 2], use a Riemann sum with m = 2, n = 3 to estimate
the value of

∫∫
R

(1− xy2) dA. Take the sample points to be (a) the lower right corners and (b) the

upper left corners of the rectangles. (#2)

Midpoint Rule of Double Integrals∫∫
R

f(x, y) dA ≈
∑m

i=1

∑n
j=1 f(x̄i, ȳj) △ A,

where x̄i is the midpoint of [xi−1, xi] and ȳj is the midpoint of [yj−1, yj ].

Exercise 3. Use the Midpoint Rule with m = n = 2 to estimate the value of integral∫∫
R

(x− 3y2) dA, where R = { (x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2 }. (Stew Section 15.1 Ex 3)

Class Exercise 3. (a) Estimate the volume of the solid that lies below the surface
z = 1 + x2 + 3y and above the rectangle R = [1, 2] X [0, 3]. Use a Riemann sum with m = n =
2 and choose the sample points to be lower left corners.
(b) Use the Midpoint Rule to estimate the volume in part(a). (#4)

Definition: Suppose that f is a function of two variables that is integrable on the rectangle R

= [a, b] X [c, d]. We use the notation
∫ d

c
f(x, y) dy to mean that x is held fixed and f(x, y) is

integrated with respect to y from y = c to y = d. This procedure is called partial integration with

respect to y. (Notice its similarity to partial differentiation.) Now
∫ d

c
f(x, y) dy is a number that

depends on the value of x, so it defines a function of x:



A(x) =
∫ d

c
f(x, y) dy.

If we now integrate the function A with respect to x from x = a to x = b, we get∫ b

a
A(x) dx =

∫ b

a
[
∫ d

c
f(x, y) dy ] dx.

The integral on the right side of the equation is called an iterated integral.

Exercise 4. Evaluate (a)
∫ 4

1

∫ 2

−1
(2x+ 6x2y) dy dx (b)

∫ 2

−1

∫ 4

1
(2x+ 6x2y) dx dy.

(Swok Sec 17.1 Ex 1, 2)

Class Exercise 4. Calculate the iterated integral. (#4-14 even)

(a)
∫ 1

0

∫ 2

1
(4x3 − 9x2y2) dy dx (b)

∫ π/2

π/6

∫ 5

−1
cos y dx dy (c)

∫ 3

1

∫ 5

1
ln y
xy dy dx

(d)
∫ 1

0

∫ 3

0
ex+3y dx dy (e)

∫ 1

0

∫ 1

0
xy

√
x2 + y2 dy dx (f)

∫ 1

0

∫ 1

0

√
s+ t ds dt

Fubini’s Theorem: If f is continuous on the rectangle R = { (x, y) | a ≤ x ≤ b, c ≤ y ≤ d },
then ∫∫

R

f(x, y) dA =
∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy.

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite
number of smooth curves, and the iterated integrals exist.

Special Case: Suppose that f(x, y) = g(x) · h(y) and R = [a, b] X [c, d].∫∫
R

f(x, y) dA =
∫∫
R

g(x) · h(y) dA =
∫ b

a
g(x) dx

∫ d

c
h(y) dy, where

R = [a, b] X [c, d].

Exercise 5. Calculate
∫∫
R

f(x, y) dA for

f(x, y) = 100 − 6x2y and R : {(x, y) : 0 ≤ x ≤ 2, −1 ≤ y ≤ 1 }.

(Hass Sec 15.1 Ex 1)

Exercise 6. Evaluate
∫∫
R

yexy dA, where R = {(x, y): 0 ≤ x ≤ 1, 0 ≤ y ≤ ln 2 }.

(Briggs Sec 13.1 Ex 4)

Class Exercise 5. Calculate the double integral. (#16-22 even)
(a)

∫∫
R

(y + xy−2) dA, R = {(x, y) | 0 ≤ x ≤ 2, 1 ≤ y ≤ 2 }

(b)
∫∫
R

1+x2

1+y2 dA, R = { (x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

(c)
∫∫
R

x
1+xy dA, R = [0, 1] X [0, 1] (d)

∫∫
R

1
1+x+y dA, R = [1, 3] X [1, 2]

Exercise 7. Find the volume of the region bounded above by the elliptical paraboloid
z = 10 + x2 + 3y2 and below by the rectangle R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2. (Hass Sec 15.1 Ex 2)

Exercise 8. Find the volume of the solid bounded by the surface f(x, y) = 4 + 9x2y2 over the
rectangle R = { (x, y): −1 ≤ x ≤ 1, 0 ≤ y ≤ 2 }. Use both possible orders of integration.
(Briggs Sec 13.1 Ex 3)

Class Exercise 6. Sketch the solid whose volume is given by the iterated integral:∫ 1

0

∫ 1

0
(2− x2 − y2) dy dx. (#24)

Class Exercise 7. Find the volume of the solid that lies under the hyperbolic paraboloid
z = 3y2 − x2 + 2 and above the rectangle R = [−1, 1] X [1, 2]. (#26)

Class Exercise 8. Find the volume of the solid enclosed by the surface z = 1 + ex sin y and the
planes x = ±1, y = 0, y = π, and z = 0. (#28)

Class Exercise 9. Find the volume of the solid in the first octant bounded by the cylinder
z = 16 − x2 and the plane y = 5. (#30)

Homework: 1-33 (every 4th), 43, 47, 53


