## Section 15.2

Exercise 1. Evaluate: $\int_{0}^{2} \int_{x^{2}}^{2 x}\left(x^{3}+4 y\right) d y d x$. (Swok Sec 17.1 Ex 3)
Exercise 2. Evaluate: $\int_{1}^{3} \int_{\pi / 6}^{y^{2}} 2 y \cos x d x d y$. (Swok Sec 17.1 Ex 4)
Class Exercise 1. Evaluate the iterated integral. (\#2,4,6)
(a) $\int_{0}^{1} \int_{2 x}^{2}(x-y) d y d x$
(b) $\int_{0}^{2} \int_{y}^{2 y} x y d x d y$
(c) $\int_{0}^{1} \int_{0}^{e^{v}} \sqrt{1+e^{v}} d w d v$

Definition: A plane region $D$ is said to be of type I if it lies between the graphs of two consecutive functions of $x$, that is,

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

Theorem: If $f$ is continuous on a type $I$ region $D$ such that

$$
D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

then $\iint_{D} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x$.
Definition: A plane region $D$ is said to be of type II if it can be expressed as

$$
D=\left\{(x, y) \mid c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

where $h_{1}$ and $h_{2}$ are continuous.

## Formula:

$$
\iint_{D} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

where $D$ is a type II region.
Exercise 3. Given $\int_{0}^{4} \int_{\sqrt{y}}^{2} y \cos x^{5} d x d y$, reverse the order of integration and evaluate the resulting integral. (Swok Sec 17.1 Ex 7)

Exercise 4. Calculate

$$
\iint_{R}(\sin x) / x d A
$$

where $R$ is the triangle in the $x y$-plane bounded by the $x$-axis, the line $y=x$, and the line $x=1$. (Hass Sec 15.2 Ex 2)

Class Exercise 2. Evaluate the double integral. ( $\# 8,10$ )
(a) $\iint_{D} \frac{y}{x^{5}+1} d A, D=\left\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x^{2}\right\}$
(b) $\iint_{D} x^{3} d A, D=\{(x, y) \mid 1 \leq x \leq e, 0 \leq y \leq \ln x\}$

Exercise 5. Let $R$ be the region in the $x y$-plane bounded by the graphs of $y=x^{2}$ and $y=2 x$. Evaluate $\iint_{R}\left(x^{3}+4 y\right) d A$. (Swok Sec 17.1 Ex 5)

Exercise 6. Let $R$ be the region bounded by the graphs of the equations $y=\sqrt{x}, y=\sqrt{3 x-18}$, and $y=0$. If $f$ is an arbitrary continuous function on $R$, express the double integral $\iint_{R} f(x, y) d A$ in terms of iterated integrals. (Swok Sec 17.1 Ex 6)

Class Exercise 3. Evaluate the double integral. (\#18,20,22)
(a) $\iint_{D}\left(x^{2}+2 y\right) d A, D$ is bounded by $y=x, y=x^{3}, x \geq 0$
(b) $\iint_{D} x y^{2} d A, D$ is enclosed by $x=0$ and $x=\sqrt{1-y^{2}}$
(c) $\iint_{D}^{D} 2 x y d A, D$ is the triangular region with vertices $(0,0),(1,2)$, and $(0,3)$.

Exercise 7. Find the volume $V$ of the solid in the first octant bounded by the coordinate planes, the paraboloid $z=x^{2}+y^{2}+1$, and the plane $2 x+y=2$. (Swok Sec 17.2 Ex 3)

Exercise 8. Find the volume $V$ of the solid that lies in the first octant and is bounded by the three coordinate planes and the cylinders $x^{2}+y^{2}=9$ and $y^{2}+z^{2}=9$. (Swok Sec 17.2 Ex 4)

Class Exercise 4. Find the volume of the given solid. (\#24, 26, 28, 30, 32)
(a) Under the surface $z=1+x^{2} y^{2}$ and above the region $x=y^{2}$ and $x=4$
(b) Enclosed by the paraboloid $z=x^{2}+3 y^{2}$ and the planes $x=0, y=1, y=x, z=0$
(c) Bounded by the planes $z=x, y=x, x+y=2$, and $z=0$
(d) Bounded by the cylinders $y^{2}+z^{2}=4$ and the planes $x=2 y, x=0, z=0$ in the first octant
(e) Bounded by the cylinders $x^{2}+y^{2}=r^{2}$ and $y^{2}+z^{2}=r^{2}$

Exercise 9. Sketch the region of integration for the integral

$$
\int_{0}^{2} \int_{x^{2}}^{2 x}(4 x+2) d y d x
$$

and write an equivalent integral with the order of integration reversed. (Hass Sec 15.2 Ex 3)

Class Exercise 5. Sketch the region of integration and change the order of integration. (\#44, 46, 48)
(a) $\int_{0}^{2} \int_{x^{2}}^{4} f(x, y) d y d x$
(b) $\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} f(x, y) d x d y$
(c) $\int_{0}^{1} \int_{\arctan x}^{\pi / 4} f(x, y) d y d x$

Class Exercise 6. Evaluate the integral by reversing the order of integration. ( $\# 50,52,54$ )
(a) $\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \cos \left(x^{2}\right) d x d y$
(b) $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$
(c) $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} e^{x^{4}} d x d y$

Homework: 1, 5, 13, 17, 19, 25, 31-47 (every 4th), 55, 59, 61, 65

