Section 15.4

We start by reviewing moments and centers of mass from single-variable calculus.
Consider a flat plate (called a lamina) in the $x y$-plane with uniform density ρ that occupies a region R of the plate. Suppose that R is bounded by the curve $y=f(x)$.

The moment of a region R about the y-axis is:

$$
M_{y}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho \bar{x}_{i} \quad f\left(\bar{x}_{i}\right) \triangle x=\rho \int_{a}^{b} x f(x) d x
$$

The moment of a region R about the x-axis is:

$$
M_{x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho \frac{1}{2}\left[f\left(\bar{x}_{i}\right)\right]^{2} \triangle=\rho \int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x
$$

The center of mass of the plate (or the centroid of R) is located at the point (\bar{x}, \bar{y}), where

$$
\bar{x}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x} \quad \bar{y}=\frac{\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x} .
$$

Exercise 1. Find the centroid of the semicircular region bounded by the x-axis on the graph of $y=\sqrt{a^{2}-x^{2}}$ with $a>0$.

Class Exercise 1. Find the centroid of the region bounded by the given curves.
(a) $y=\sqrt{x}, y=0$, and $x=4$
(b) $y=\sin x, y=0,0 \leq x \leq \pi$
(c) $y=2-x^{2}$ and $y=x$
(d) $y=x^{3}, x+y=2$, and $y=0$

Formula: Suppose a lamina occupies a region D of the $x y$-plane and its density at point (x, y) in D is given by $\rho(x, y)$, where ρ is a continuous function on D. Then, the total mass m of the lamina is

$$
m=\lim _{k, l \rightarrow \infty} \sum_{i=1}^{k} \sum_{j=1}^{l} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D} \rho(x, y) d A
$$

Definition: The moment of the entire lamina about the $\underline{x \text {-axis: }}$

$$
M_{x}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} y_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D} y \cdot \rho(x, y) d A
$$

Definition: The moment of the entire lamina about the $\underline{y \text {-axis: }}$

$$
M_{y}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{*} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D} x \cdot \rho(x, y) d A
$$

Formula: The coordinates (\bar{x}, \bar{y}) of the center of mass of a lamina occupying the region D and having density function $\rho(x, y)$ are

$$
\bar{x}=\frac{M_{y}}{m}=\frac{1}{m} \iint_{D} x \cdot \rho(x, y) d A, \quad \bar{y}=\frac{M_{x}}{m}=\frac{1}{m} \iint_{D} y \cdot \rho(x, y) d A
$$

where the mass m is given by

$$
m=\iint_{D} \rho(x, y) d A
$$

Exercise 2. A lamina has the shape of an isosceles right triangle with equal sides of length a. The area mass density at a point P is directly proportional to the square of the distance from P to the vertex that is opposite the hypotenuse. Find the center of mass. (Swok Sec 17.6 Ex 1)

Exercise 3. A lamina has the shape of the region R in the $x y$-plane bounded by the parabola x $=y^{2}$ and the line $x=4$. The area mass density at the point $P(x, y)$ is directly proportional to the distance from the y-axis to P. Find the center of mass. (Skow Sec 17.6 Ex 2)

Class Exercise 2. Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ. $(\# 4,6,8,10)$
(a) $D=\{(x, y) \mid 0 \leq x \leq a, 0 \leq y \leq b\} ; \rho(x, y)=1+x^{2}+y^{2}$
(b) D is the triangular region enclosed by the lines $x=0, y=x$, and $2 x+y=6 ; \rho(x, y)=x^{2}$
(c) D is bounded by $y=x^{2}$ and $y=x+2 ; \rho(x, y)=k x$
(d) D is bounded by the parabolas $y=x^{2}$ and $x=y^{2} ; \rho(x, y)=\sqrt{x}$

Definition: The moment of inertia of a particle of mass m about an axis is defined to be $m r^{2}$, where r is the distance from the particle to the axis.

Definition: The moment of inertia of the lamina about the x-axis is

$$
I_{x}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(y_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D} y^{2} \rho(x, y) d A
$$

Definition: The moment of inertia of the lamina about the y-axis is

$$
I_{y}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left(x_{i j}^{*}\right)^{2} \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D} x^{2} \rho(x, y) d A .
$$

Definition: The moment of inertia of the lamina about the origin is

$$
I_{o}=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n}\left[\left(x_{i j}^{*}\right)^{2}+\left(y_{i j}^{*}\right)^{2}\right] \rho\left(x_{i j}^{*}, y_{i j}^{*}\right) \triangle A=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A
$$

Exercise 4. A thin plate covers the triangular region bounded by the x-axis and the lines $x=1$ and $y=2 x$ in the first quadrant. The plate's density at the point (x, y) is $\rho(x, y)=6 x+6 y+6$. Find the plate's moments of inertia about the coordinate axes and the origin.
(Hass Sec 15.6 Ex 4)

Class Exercise 3. Suppose a lamina occupies the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant and the density at any point is proportional to the square of its distance from the origin. Find the moments of inertia I_{x}, I_{y}, I_{0} for the lamina. (\#18)

Class Exercise 4. Suppose a lamina occupies with a triangle $(0,0),(b, 0)$, and $(0, h)$ with constant density $\rho(x, y)=\rho$. Find the moments of inertia I_{x} and I_{y}. (\#22)

Class Exercise 5. Suppose a lamina occupies the region under the curve $y=\sin x$ from $x=0$ to $x=\pi$ with constant density $\rho(x, y)=\rho$. Find the moments of inertia I_{x} and I_{y}. (\#24)

Homework: 5, 7, 9, 13, 15, 17, 19, 23

