## Section 15.5

Definition: Suppose $S$ is a surface with equation $z=f(x, y)$, where $f$ has continuous partial derivatives. The surface area of $S$ is

$$
A(S)=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \triangle T_{i j}
$$

Formula: The area of the surface with equation $z=f(x, y),(x, y) \in D$, where $f_{x}$ and $f_{y}$ are continuous, is

$$
A(S)=\iint_{D} \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1} d A
$$

## Formula with Alternative Notation

$$
A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

Exercise 1. Let $R$ be the triangular region in the $x y$-plane with vertices $(0,0,0),(0,1,0)$, and $(1,1,0)$. Find the surface area of that portion of the graph $z=3 x+y^{2}$ that lies over $R$.
(Swok Sec 17.4 Ex 1)
Exercise 2. Find the surface area of the paraboloid $z=4-x^{2}-y^{2}$ for $z \geq 0$.
(Swok Sec 17.4 Ex 2)

Class Exercise 1. Find the area of the surface. ( $\# 2,4,8,10,12$ )
(a) The part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$
(b) The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$
(c) The surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$
(d) The part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the plane $z=1$
(e) The part of the sphere $x^{2}+y^{2}+z^{2}=4 z$ that lies inside the paraboloid $z=x^{2}+y^{2}$

Homework: 3-13 ODD, 17(a)

