Section 15.6

Definition: The triple integral of f over the box B is

$$
\iiint_{B} f(x, y, z) d V=\lim _{l, m, n \rightarrow \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right) \Delta V
$$

if this limit exists.
Fubini's Theorem for Triple Integrals: If f is continuous on the rectangular box $B=[a, b]$ $\bar{X}[c, d] X[r, s]$, then

$$
\iiint_{B} f(x, y, z) d V=\int_{r}^{s} \int_{c}^{d} \int_{a}^{b} f(x, y, z) d x d y d z
$$

Exercise 1. Evaluate $\iiint_{Q}\left(x y^{2}+y z^{3}\right) d V$ if

$$
Q=\{(x, y, z):-1 \leq x \leq 1,3 \leq y \leq 4,0 \leq z \leq 2\}
$$

(Swok Sec 17.5 Ex 1)
Class Exercise 1. Evaluate the iterated integral. ($\# 4,6,8$)
(a) $\int_{0}^{1} \int_{x}^{2 x} \int_{0}^{y} 2 x y z d z d y d x$
(b) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-z^{2}}} \frac{z}{y+1} d x d z d y$
(c) $\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \int_{0}^{x z} x^{2} \sin y d y d z d x$

Definition: A solid region E is said to be of type I if it lies between the graphs of two continuous functions of x and y, that is,

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

where D is the projection of E onto the $x y$-plane.
Evaluation Theorem I: Suppose that E is a type I region. Then,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z\right] d A
$$

If the projection D of E onto the $x y$-plane is a type I region, then

$$
E=\left\{(x, y, z) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x), u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\}
$$

and the equation becomes

$$
\iiint_{E} f(x, y, z) d V=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d y d x
$$

Definition A solid region E is of type II if it is of the form

$$
E=\left\{(x, y, z) \mid(y, z) \in D, u_{1}(y, z) \leq x \leq u_{2}(y, z)\right\}
$$

where D is the projection of E onto the $y z$-plane.
Evaluation Theorem II: Suppose that E is a type $I I$ region. Then,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x\right] d A .
$$

Definition: A solid region E is of type III if it is of the form

$$
E=\left\{(x, y, z) \mid(x, z) \in D, u_{1}(x, z) \leq y \leq u_{2}(x, z)\right\}
$$

where D is the projection of E onto the $x z$-plane.
Evaluation Theorem III: Suppose that E is a type III region. Then,

$$
\iiint_{E} f(x, y, z) d V=\iint_{D}\left[\int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y\right] d A .
$$

Exercise 2. Evaluate $\iiint_{E} z d V$, where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$, and $x+y+z=1$. (Stew Sec 15.6 Ex 2)

Exercise 3. Evaluate $\iiint_{E} \sqrt{x^{2}+z^{2}} d V$, where E is the region bounded by the paraboloid $y=x^{2}+z^{2}$ and the plane $y=4$. (Stew Sec 15.6 Ex 3)

Class Exercise 2. Evaluate the triple integral. (\#10-18 even).
(a) $\iiint_{E} e^{z / y} d V$, where $\left.E=\{(x, y, z)\} \mid 0 \leq y \leq 1, y \leq x \leq 1,0 \leq z \leq x y\right\}$
(b) $\iiint_{E} \sin y d V$, where E lies below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0),(0, \pi, 0)$
(c) $\iiint_{E} x y d V$, where E is bounded by the parabolic cylinders $y=x^{2}$ and $x=y^{2}$ and the planes $z=0$ and $z=x+y$
(d) $\iiint_{T} x y z d V$, where T is the tetrahedron with vertices $(0,0,0),(1,1,0),(1,0,1)$, and $(1,0,0)$
(e) $\iiint_{E} z d V$, where E is bounded by the cylinder $y^{2}+z^{2}=9$ and the planes $x=0, y=3 x$, $z=0$ in the first octant

Volume Formula: $V(E)=\iiint_{E} d V$
Exercise 4. Find the volume V of the solid that is bounded by the cylinder $y=x^{2}$ and by the planes $y+z=4$ and $z=0$. (Swok Sec 17.5 Ex 3)

Exercise 5. Find the volume of the region Q bounded by the graphs of $z=3 x^{2}, z=4-x^{2}$, $y=0$ and $z+y=6$. (Swok Sec 17.5 Ex 4)

Class Exercise 3. Use a triple integral to find the volume of the given solid. $(\# 20,22)$
(a) The solid enclosed by the paraboloids $y=x^{2}+z^{2}$ and $y=8-x^{2}-z^{2}$
(b) The solid enclosed by the cylinder $x^{2}+z^{2}=4$ and the planes $y=-1$ and $y+z=4$

Class Exercise 4. Express the integral $\iiint_{E} f(x, y, z) d V$ as an iterated integral in six different ways, where E is the solid bounded by the given surfaces. $(\# 30,32)$
(a) $y^{2}+z^{2}=9, x=-2, x=2$
(b) $x=2, y=2, z=0, x+y-2 z=2$

Homework: 3, 7, 13, 17, 21, 23, 25, 29, 33, 35, 39

