Section 15.7

Definition: In the cylindrical coordinate system, a point P in three-dimensional space is represented by the ordered triple (r, θ, z), where r and θ are polar coordinates of the projection of P onto the $x y$-plane and z is the directed distance from the $x y$-plane to P.

Conversion From Cylindrical Coordinates to Rectangular Coordinates

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z
$$

Conversion From Rectangular Coordinates to Cylindrical Coordinates

$$
r^{2}=x^{2}+y^{2} \quad \tan \theta=\frac{y}{x} \quad z=z
$$

Exercise 1. (a) Plot the point $(2,2 \pi / 3,1)$ and find its rectangular coordinates.
(b) Find cylindrical coordinates of the point $(3,-3,-7)$. (Stew Sec 15.7 Ex 1)

Class Exercise 1. Plot the point whose cylindrical coordinates are given. Then find the rectangular coordinates of the point. (a) $(\sqrt{2}, 3 \pi / 4,2) \quad$ (b) $(1,1,1)(\# 2)$

Class Exercise 2. Change from rectangular coordinates to cylindrical coordinates.
(a) $(2 \sqrt{3}, 2,-1)$
(b) $(4,-3,2)(\# 4)$

Exercise 2. Change the equation $z^{2}=x^{2}+y^{2}$ to cylindrical coordinates, and sketch its graph. (Swok Sec 1.7 Ex 1)

Exercise 3. Identify and sketch the following sets in cylindrical coordinates.
(a) $Q=\{(r, \theta, z): 1 \leq r \leq 3, z \geq 0\}$
(b) $S=\{(r, \theta, z): z=1-r, 0 \leq r \leq 1\}($ Briggs Sec 13.5 Ex 1)

Class Exercise 3. Describe in words the surface whose equation is given: $r=5$. (\#6)
Class Exercise 4. Identify the surface whose equation is given: $2 r^{2}+z^{2}=1$. (\#8)
Class Exercise 5. Write the equations in cylindrical coordinates. (\#10)
(a) $3 x+2 y+z=6$
(b) $-x^{2}-y^{2}+z^{2}=1$

Class Exercise 6. Sketch the solid described by the given inequalities:
$0 \leq \theta \leq \pi / 2, r \leq z \leq 2$. (\#12)
Formula for Triple Integration in Cylindrical Coordinates: Suppose that E is a type I region whose projection D onto the $x y$-plane is conveniently described in polar coordinates:

$$
\iiint_{E} f(x, y, z) d V=\int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} \int_{u_{1}(r \cos \theta, r \sin \theta)}^{u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

Exercise 4. Find the volume of the solid D between the cone $z=\sqrt{x^{2}+y^{2}}$ and the inverted paraboloid $z=12-x^{2}-y^{2}$. (Briggs Sec 13.5 Ex 4)

Exercise 5. A solid Q is bounded by the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=2$. The density at $P(x, y, z)$ is directly proportional to the square of the distance from the origin to P. Find its mass. (Swok Sec 17.7 Ex 4)

Class Exercise 7. Use cylindrical coordinates. (\#18-24 even, 28)
(a) Evaluate $\iiint_{E} z d V$, where E is enclosed by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
(b) Evaluate $\iint_{E}^{E} \int x d V$, where E is enclosed by the planes $z=0$ and $z=x+y+5$ and by the cylinders $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$.
(c) Find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere x^{2} $+y^{2}+z^{2}=4$
(d) Find the volume of the solid that lies between the paraboloid $z=x^{2}+y^{2}$ and the sphere x^{2} $+y^{2}+z^{2}=2$
(e) Find the mass of a ball B given by $x^{2}+y^{2}+z^{2} \leq a^{2}$ if the density at any point is proportional to its distance from the z-axis.

Homework: 1-13 ODD, 17-25 ODD, 27(a)

