Section 15.9

Exercise 1. Evaluate $\int_{0}^{\pi} \sin ^{2}(\theta) \cos (\theta) d \theta$.
Substitution Rule for Definite Integrals: If $u=g(x)$ is a differentiable function whose range is an interval I and f is continuous on I, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Definition: Let's consider a function T whose domain D is a region in the $x y$-plane and whose range E is a region in the $u v$-plane. We call T a transformation of coordinates from the $x y$-plane to the $u v$-plane.

Exercise 2. Let T be the transformation of coordinates from the $x y$-plane to the $u v$-plane determined by

$$
u=x+2 y, v=x-2 y
$$

Sketch, in the $u v$-plane, the vertical lines $u=2, u=4, u=6, u=8$ and the horizontal lines $v=-1, v=1, v=3, v=5$. Sketch the corresponding curves in the $x y$-plane.
(Swok Sec 17.9 Ex 1)

Exercise 3. Consider the transformation from polar to rectangular coordinates given by

$$
T: x=g(r, \theta)=r \cos \theta \text { and } y=h(r, \theta)=r \sin \theta .
$$

Find the image under this transformation of the rectangle:

$$
S=\{(r, \theta): 0 \leq r \leq 1,0 \leq \theta \leq \pi / 2
$$

(Briggs Sec 13.7 Ex 1)
Class Exercise 1. Find the images of the set S under the given transformation. $(\# 8,10)$
(a) S is the square bounded by the lines $u=0, u=1, v=0, v=1 ; x=v, y=u\left(1+v^{2}\right)$
(b) S is the disk given by $u^{2}+v^{2} \leq 1 ; x=a u, y=b v$.

Class Exercise 2. A region R is the $x y$-plane is given. Find equations for a transformation T that maps a rectangular region S in the $u v$-plane onto R, where the sides are parallel to the $u-$ and v - axes. ($\# 12,14$)
(a) R is the parallelogram with vertices $(0,0),(4,3),(2,4),(-2,1)$
(b) R is bounded by the hyperbolas $y=1 / x, y=4 / x$, and the lines $y=x, y=4 x$ in the first quadrant

Definition: The Jacobian of the transformation T given by $x=g(u, v)$ and $y=h(u, v)$ is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \cdot \frac{\partial y}{\partial u} .
$$

Exercise 4. Compute the Jacobian of the transformation:

$$
T: \quad x=g(r, \theta)=r \cos \theta, \quad y=h(r, \theta)=r \sin \theta
$$

(Briggs Sec 15.7 Ex 2)

Class Exercise 3. Find the Jacobian of the transformation. (\#2,4)
(a) $x=u v, y=u / v$
(b) $x=e^{s+t}, y=e^{s-t}$

Definition: The Jacobian of the transformation T given by $x=g(u, v, w) \quad y=h(u, v, w) \quad z=k(u, v, w)$ is

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| .
$$

Class Exercise 4. Find the Jacobian of the transformation. (\#6)
(a) $x=v+w^{2}, y=w+u^{2}, z=u+v^{2}$

Change of Variables in a Double Integral: Suppose that T is a C^{1} transformation whose Jacobian is nonzero and that T maps a region S in the $u v$-plane onto a region R in the $x y$-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose that T is one-to-one, except perhaps on the boundary of S. Then

$$
\iint_{R} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| d u d v
$$

Exercise 5. Evaluate the integral $\iint_{R} \sqrt{2 x(y-2 x)} d A$, where R is the parallelogram in the $x y$-plane with vertices $(0,0),(0,1),(2,4),(2,5)$. Use the transformation $T: x=2 u, y=4 u+v$. (Briggs Sec 13.7 Ex 3)

Class Exercise 5. Use the given transformation to evaluate the integral. ($\# 16,18$)
(a) $\iint_{R}(4 x+8 y) d A$, where R is the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$;

$$
x=\frac{1}{4}(u+v) \quad y=\frac{1}{4}(v-3 u)
$$

(b) $\iint_{R}\left(x^{2} y-x y+y^{2}\right) d A$, where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=2$;

$$
x=\sqrt{2} u-\sqrt{2 / 3} v, y=\sqrt{2} u+\sqrt{2 / 3} v
$$

Change of Variables in Triple Integrals:

$$
\iiint_{R} f(x, y, z) d V=\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| \quad d u d v d w
$$

Exercise 6. Evaluate

$$
\int_{0}^{3} \int_{0}^{4} \int_{x=y / 2}^{x=(y / 2)+1}\left(\frac{2 x-y}{2}+\frac{z}{3}\right) d x d y d z
$$

by applying the transformation

$$
u=(2 x-y) / 2, \quad v=y / 2, \quad w=z / 3
$$

and integrating over an appropriate region in the $u v w$-space. (Hass Sec 15.8 Ex 5)

Exercise 7. Evaluate

$$
\iint_{R} e^{(y-x) /(y+x)} d x d y
$$

where R is the region in the $x y$-plane bounded by the trapezoid with vertices $(0,1),(0,2),(2,0)$, and (1,0). (Swok Sec 17.9 Ex 4)

Class Exercise 6. Evaluate the integral by making an appropriate change of variables. (\#24,26)
(a) $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where R is the rectangle enclosed by the lines $x-y=0$,
$x-y=2, x+y=0, x+y=3$
(b) $\iint_{R} \sin \left(9 x^{2}+4 y^{2}\right) d A$, where R is in the region in the first quadrant by the ellipse $9 x^{2}+4 y^{2}=1$

Homework: 3-21 ODD, 23(a), 25, 29

