Section 16.1

Definition: Let D be a set in \mathbb{R}^{2} (a plane region). A vector field on \mathbb{R}^{2} is a function \vec{F} that assigns to each point (x, y) in D a two-dimensional vector $\vec{F}(x, y)$.
Exercise 1. Describe the vector field \vec{F} if $\vec{F}(x, y)=-y \vec{i}+x \vec{j}$. (Swok Sec 18.1 Ex 1)
Definition: Let E be a subset of \mathbb{R}^{3}. A vector field on \mathbb{R}^{3} is a function \vec{F} that assigns to each point (x, y, z) in E a three-dimensional vector $\vec{F}(x, y, z)$.

Exercise 2. Vector fields in \mathbb{R}^{3}. Sketch and discuss the following vector fields.
(Briggs Sec 14.1 Ex 3)
(a) $\vec{F}(x, y, z)=<x, y, e^{-z}>$, for $z \geq 0$
(b) $\vec{F}(x, y, z)=<0,0,1-x^{2}-y^{2}>$, for $x^{2}+y^{2} \leq 1$

Class Exercise 1. Sketch the vector field $\vec{F} \xrightarrow{\rightarrow}$ by drawing a diagram. (\#2-10 even)
(a) $\vec{F}(x, y)=\frac{1}{2} x \vec{i}+y \vec{j}$
(b) $\vec{F}(x, y)=y \vec{i}+(x+y) \vec{j}$
(c) $\vec{F}(x, y)=\frac{y \vec{i}-x \vec{j}}{\sqrt{x^{2}+y^{2}}}$
(d) $\vec{F}(x, y, z)=-y \vec{k}$
(e) $\vec{F}(x, y, z)=\vec{j}-\vec{i}$

Definition: If f is a scalar function of two variables, recall that its gradient ∇f is defined by

$$
\nabla f(x, y)=f_{x}(x, y) \vec{i}+f_{y}(x, y) \vec{j}
$$

Therefore, ∇f is really a vector field on \mathbb{R}^{2} and is called a gradient vector field.
Exercise 3. Sketch and interpret the gradient field associated with the temperature function $T=200-x^{2}-y^{2}$ on the circular plate $R=\left\{(x, y): x^{2}+y^{2} \leq 25\right\}$. (Briggs Sec 14.1 Ex 4a)

Exercise 4. Sketch and interpret the gradient field associated with the velocity potential $\phi=\tan ^{-1}(y / x)$. (Briggs Sec 14.1 Ex 4b)

Class Exercise 2. Find the gradient vector field of f. $(\# 22,24)$
(a) $f(x, y)=\tan (3 x-4 y)$
(b) $f(x, y, z)=x \ln (y-2 z)$

Class Exercise 3. Find the gradient vector field ∇f of $f(x, y)=\sqrt{x^{2}+y^{2}}$ and sketch it. (\#26)
Definition: A vector field \vec{F} is called a conservative vector field if it is the gradient of some scalar function, that is, if there exists a function f such that $\vec{F}=\nabla f$.

Definition: In the above situation, f is called a potential function for \vec{F}.
Homework: 1, 5-17 ODD, 25-33 ODD

