Section 16.1

Definition: Let D be a set in \mathbb{R}^2 (a plane region). A vector field on \mathbb{R}^2 is a function \overrightarrow{F} that assigns to each point (x, y) in D a two-dimensional vector $\overrightarrow{F}(x, y)$.

Exercise 1. Describe the vector field \overrightarrow{F} if $\overrightarrow{F}(x,y) = -y \overrightarrow{i} + x \overrightarrow{j}$. (Swok Sec 18.1 Ex 1)

Definition: Let E be a subset of \mathbb{R}^3 . A <u>vector field on \mathbb{R}^3 </u> is a function \overrightarrow{F} that assigns to each point (x, y, z) in E a three-dimensional vector $\overrightarrow{F}(x, y, z)$.

Exercise 2. Vector fields in \mathbb{R}^3 . Sketch and discuss the following vector fields. (Briggs Sec 14.1 Ex 3)

(a) $\overrightarrow{F}(x, y, z) = \langle x, y, e^{-z} \rangle$, for $z \ge 0$ (b) $\overrightarrow{F}(x, y, z) = \langle 0, 0, 1 - x^2 - y^2 \rangle$, for $x^2 + y^2 \le 1$

Class Exercise 1. Sketch the vector field \overrightarrow{F} by drawing a diagram. (#2-10 even) (a) $\overrightarrow{F}(x,y) = \frac{1}{2}x\overrightarrow{i} + y\overrightarrow{j}$ (b) $\overrightarrow{F}(x,y) = y\overrightarrow{i} + (x+y)\overrightarrow{j}$ (c) $\overrightarrow{F}(x,y) = \frac{y\overrightarrow{i} - x\overrightarrow{j}}{\sqrt{x^2+y^2}}$ (d) $\overrightarrow{F}(x,y,z) = -y\overrightarrow{k}$ (e) $\overrightarrow{F}(x,y,z) = \overrightarrow{j} - \overrightarrow{i}$

<u>Definition</u>: If f is a scalar function of two variables, recall that its gradient ∇f is defined by

$$\nabla f(x,y) = f_x(x,y) \overrightarrow{i} + f_y(x,y) \overrightarrow{j}.$$

Therefore, ∇f is really a vector field on \mathbb{R}^2 and is called a **gradient vector field**.

Exercise 3. Sketch and interpret the gradient field associated with the temperature function $T = 200 - x^2 - y^2$ on the circular plate $R = \{ (x, y) : x^2 + y^2 \le 25 \}$. (Briggs Sec 14.1 Ex 4a)

Exercise 4. Sketch and interpret the gradient field associated with the velocity potential $\phi = \tan^{-1}(y/x)$. (Briggs Sec 14.1 Ex 4b)

Class Exercise 2. Find the gradient vector field of f. (#22,24) (a) $f(x, y) = \tan(3x - 4y)$ (b) $f(x, y, z) = x \ln(y - 2z)$

Class Exercise 3. Find the gradient vector field ∇f of $f(x, y) = \sqrt{x^2 + y^2}$ and sketch it. (#26)

Definition: A vector field \overrightarrow{F} is called a **conservative vector field** if it is the gradient of some scalar function, that is, if there exists a function f such that $\vec{F} = \nabla f$.

<u>Definition</u>: In the above situation, f is called a **potential function** for \vec{F} .

Homework: 1, 5-17 ODD, 25-33 ODD