Section 16.2

Definition: We start with a plane curve C given by the parametric equations

$$x = x(t)$$
 $y = y(t)$ $a \le t \le b$

If f is defined on a smooth curve C given by the equation above, then the **line integral of** f **along** C is

$$\int_C f(x,y) \ ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \ \Delta s_i$$

if this limit exists.

Line Integral Formula:
$$\int_C f(x,y) \, ds = \int_a^b f(x(t),y(t)) \, \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Exercise 1. Evaluate $\int_C xy^2 ds$ if C has the parametrization

 $x = \cos t$, $y = \sin t$; $0 \le t \le \pi/2$.

(Swok Sec 18.2 Ex 1)

Exercise 2. Evaluate $\int_C (xy + 2z) ds$ on the following line segments. (a) The line segment from P(1,0,0) to Q(0,1,1) (b) The line segment from Q(0,1,1) to P(1,0,0) (Briggs Sec 14.2 Ex 3)

Class Exercise 1. Evaluate the line integral, where C is the given curve. (#2,4) (a) $\int_C xy \, ds, C$: $x = t^2, y = 2t, 0 \le t \le 1$ (b) $\int_C x \sin y \, ds, C$ is the line segment from (0,3) to (4,6)

<u>Definition</u>: The line integrals of f along C with respect to x and y:

 $\int_C f(x,y) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \bigtriangleup x_i \quad \int_C f(x,y) \, dy = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*) \bigtriangleup y_i$ Formula: Suppose x = x(t) and y = y(t)

$$\int_C f(x,y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$
$$\int_C f(x,y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

Line Integral Abbreviation: $\int_C P(x,y) dx + \int_C Q(x,y) dy = \int_C P(x,y) dx + Q(x,y) dy$.

Exercise 3. Evaluate $\int_C xy \, dx + x^2 \, dy$ if

(a) C consists of line segments from (2,1) to (4,1) and from (4,1) to (4,5)

(b) C is the line segment from (2,1) to (4,5). (Swok Sec 18.2 Ex 4)

Class Exercise 2. Evaluate the line integral, where C is the given curve. (#6,8) (a) $\int_C e^x dx$, C is the arc of the curve $x = y^3$ from (-1, -1) to (1, 1)(b) $\int_C x^2 dx + y^2 dy$, C consists of the arc of the circle $x^2 + y^2 = 4$ from (2,0) to (0,2) followed by the line segment from (0,2) to (4,3)

<u>Definition</u>: In general, a given parametrization x = x(t), y = y(t), $a \le t \le b$, determines an <u>orientation</u> of a curve C, with the positive direction corresponding to increasing values of the parameter t.

Line Integrals in Space: We now suppose that C is a smooth space curve given by the parametric equations: x = x(t) y = y(t) z = z(t) $a \le t \le b$.

<u>**Definition**</u>: We define the <u>line integral of f along C in a manner similar to that for plane curves:</u>

$$\int_C f(x, y, z) \, ds = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*, z_i^*) \, \triangle \, s_i.$$

Formula

$$\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \, \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \, dt.$$

Line integrals along C with respect to x, y, and z can also be defined. For example,

$$\int_{C} f(x, y, z) \, dz = \lim_{n \to \infty} f(x_i^*, y_i^*, z_i^*) \, \triangle \, z_i = \int_a^b f(x(t), y(t), z(t)) \, z'(t) \, dt.$$

Line Integral Abbreviation: We evaluate integrals of the form

$$C_C P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

by expressing everything (x, y, z, dx, dy, dz) in terms of the parameter t.

Exercise 4. Evaluate the line integral $\int_C -y \, dx + z \, dy + 2x \, dz$, where *C* is the helix $\overrightarrow{r}(t) = (\cos t) \overrightarrow{i} + (\sin t) \overrightarrow{j} + t \overrightarrow{k}, 0 \le t \le 2\pi$. (Hass Sec 16.2 Ex 3)

Exercise 5. Evaluate $\int_C y \sin z \, ds$, where C is circular helix given by the equations $x = \cos t$, $y = \sin t$, z = t, $0 \le t \le 2\pi$. (Stew Sec 16.2 Ex 5)

Exercise 6. Evaluate $\int_C yz \, dx + xz \, dy + xy \, dz$ if C is given by

$$x = t, y = t^2, z = t^3; 0 \le t \le 2.$$
 (Swok Sec 18.2 Ex 5)

Class Exercise 3. Evaluate the line integral, where C is the given curve. (#10-16 even) (a) $\int_C xyz^2 ds$, C is the line segment from (-1, 5, 0) to (1, 6, 4)(b) $\int_C (x^2 + y^2 + z^2) ds$, C: x = t, $y = \cos 2t$, $z = \sin 2t$, $0 \le t \le 2\pi$ (c) $\int_C y dx + z dy + x dz$, C: $x = \sqrt{t}$, $y = t^2$, $z = t^3$, $1 \le t \le 4$ (d) $\int_C (y+z) dx + (x+z) dy + (x+y) dz$, C consists of line segments from (0,0,0) to (1,0,1) and from (1,0,1) to (0,1,2).

Definition: The work W done by the force field \overrightarrow{F} is the limit of Riemann sums:

$$W = \int_C \overrightarrow{F}(x, y, z) \cdot \overrightarrow{T}(x, y, z) \, ds = \int_C \overrightarrow{F} \cdot \overrightarrow{T} \, ds$$

Here is the computational formula: $W = \int_a^b \overrightarrow{F}(\overrightarrow{r}(t)) \cdot \overrightarrow{r'}(t) dt$.

<u>Definition</u>: Let \overrightarrow{F} be a continuous vector field defined on a smooth curve C given by a vector function $\overrightarrow{r}(t)$, $a \leq t \leq b$. Then, the <u>line integral of \overrightarrow{F} along C is</u>

$$\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = \int_a^b \overrightarrow{F}(\overrightarrow{r}(t)) \cdot \overrightarrow{r}'(t) dt = \int_c \overrightarrow{F} \cdot \overrightarrow{T} ds.$$

Exercise 7. Evaluate $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F}(x, y, z) = z\vec{i} + xy\vec{j} - y^2\vec{k}$ along the curve *C* given by $\vec{r}(t) = t^2\vec{i} + t\vec{j} + \sqrt{t}\vec{k}$, $0 \le t \le 1$. (Hass Sec 16.2 Ex 2)

Class Exercise 4. Evaluate the line integral $\int_C \vec{F} \cdot d\vec{r}$, where *C* is given by the vector function $\vec{r}(t)$. (#20,22) (a) $\vec{F}(x, y, z) = (x + y)\vec{i} + (y - z)\vec{j} + z^2\vec{k}$, $\vec{r}(t) = t^2\vec{i} + t^3\vec{j} + t^2\vec{k}$, $0 \le t \le 1$

(b)
$$\vec{F}(x,y,z) = x\vec{i} + y\vec{j} + xy\vec{k}, \vec{r}(t) = \cos t \vec{i} + \sin t \vec{j} + t\vec{k}, 0 \le t \le \pi$$

Exercise 8. Find the work done by the force field $\overrightarrow{F} = (y - x^2)\overrightarrow{i} + (z - y^2)\overrightarrow{j} + (x - z^2)\overrightarrow{k}$ along the curve $\overrightarrow{r}(t) = t\overrightarrow{i} + t^2\overrightarrow{j} + t^3\overrightarrow{k}, 0 \le t \le 1$, from (0,0,0) to (1,1,1). (Hass Sec 16.2 Ex 4)

Exercise 9. Find the work done by the force field $\overrightarrow{F} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ in moving an object along the curve *C* parametrized by $\overrightarrow{r}(t) = \cos(\pi t) \overrightarrow{i} + t^2 \overrightarrow{j} + \sin(\pi t) \overrightarrow{k}, 0 \le t \le 1$. (Hass Sec 16.2 Ex 5)

Class Exercise 5. Find the work done by the force field $\overrightarrow{F}(x,y) = x^2 \overrightarrow{i} + y e^x \overrightarrow{j}$ on a particle that moves along the parabola $x = y^2 + 1$ from (1,0) to (2,1). (#40)

Class Exercise 6. The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\overrightarrow{r} = \langle x, y, z \rangle$ is $\overrightarrow{F}(\overrightarrow{r}) = K \overrightarrow{r}/|\overrightarrow{r}|^3$ where K is a constant. Find the work done as the particle moves from a straight line from (2,0,0) to (2,1,5). (#42)

Connection Between Line Integrals of Vector Fields and Line Integrals of Scalar Fields:

 $\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = \int_C P \, dx + Q \, dy + R \, dz, \text{ where } \overrightarrow{F} = P \overrightarrow{i} + Q \overrightarrow{j} + R \overrightarrow{k}.$

Homework: 1-13 ODD, 17-27 ODD, 35