Section 16.2

Definition: We start with a plane curve C given by the parametric equations

$$
x=x(t) \quad y=y(t) \quad a \leq t \leq b
$$

If f is defined on a smooth curve C given by the equation above, then the line integral of f along C is

$$
\int_{C} f(x, y) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \triangle s_{i}
$$

if this limit exists.
Line Integral Formula: $\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
Exercise 1. Evaluate $\int_{C} x y^{2} d s$ if C has the parametrization

$$
x=\cos t, \quad y=\sin t ; \quad 0 \leq t \leq \pi / 2
$$

(Swok Sec 18.2 Ex 1)

Exercise 2. Evaluate $\int_{C}(x y+2 z) d s$ on the following line segments.
(a) The line segment from $P(1,0,0)$ to $Q(0,1,1)$
(b) The line segment from $Q(0,1,1)$ to $P(1,0,0)$
(Briggs Sec 14.2 Ex 3)

Class Exercise 1. Evaluate the line integral, where C is the given curve. (\#2,4)
(a) $\int_{C} x y d s, C: x=t^{2}, y=2 t, 0 \leq t \leq 1$
(b) $\int_{C} x \sin y d s, C$ is the line segment from $(0,3)$ to $(4,6)$

Definition: The line integrals of f along C with respect to x and y :

$$
\int_{C} f(x, y) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \triangle x_{i} \quad \int_{C} f(x, y) d y=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right) \triangle y_{i}
$$

Formula: Suppose $x=x(t)$ and $y=y(t)$

$$
\begin{aligned}
& \int_{C} f(x, y) d x=\int_{a}^{b} f(x(t), y(t)) x^{\prime}(t) d t \\
& \int_{C} f(x, y) d y=\int_{a}^{b} f(x(t), y(t)) y^{\prime}(t) d t
\end{aligned}
$$

Line Integral Abbreviation: $\int_{C} P(x, y) d x+\int_{C} Q(x, y) d y=\int_{C} P(x, y) d x+Q(x, y) d y$.
Exercise 3. Evaluate $\int_{C} x y d x+x^{2} d y$ if
(a) C consists of line segments from $(2,1)$ to $(4,1)$ and from $(4,1)$ to $(4,5)$
(b) C is the line segment from $(2,1)$ to $(4,5)$. (Swok Sec 18.2 Ex 4)

Class Exercise 2. Evaluate the line integral, where C is the given curve. $(\# 6,8)$
(a) $\int_{C} e^{x} d x, C$ is the arc of the curve $x=y^{3}$ from $(-1,-1)$ to $(1,1)$
(b) $\int_{C} x^{2} d x+y^{2} d y, C$ consists of the arc of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$ followed by the line segment from $(0,2)$ to $(4,3)$

Definition: In general, a given parametrization $x=x(t), y=y(t), a \leq t \leq b$, determines an orientation of a curve C, with the positive direction corresponding to increasing values of the parameter t.

Line Integrals in Space: We now suppose that C is a smooth space curve given by the parametric equations: $x=x(t) \quad y=y(t) \quad z=z(t) \quad a \leq t \leq b$.

Definition: We define the line integral of f along C in a manner similar to that for plane curves:

$$
\int_{C} f(x, y, z) d s=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \triangle s_{i} .
$$

Formula

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
$$

Line integrals along C with respect to x, y, and z can also be defined. For example,

$$
\int_{C} f(x, y, z) d z=\lim _{n \rightarrow \infty} f\left(x_{i}^{*}, y_{i}^{*}, z_{i}^{*}\right) \triangle z_{i}=\int_{a}^{b} f(x(t), y(t), z(t)) z^{\prime}(t) d t .
$$

Line Integral Abbreviation: We evaluate integrals of the form

$$
\int_{C} P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z
$$

by expressing everything $(x, y, z, d x, d y, d z)$ in terms of the parameter t.
Exercise 4. Evaluate the line integral $\int_{C}-y d x+z d y+2 x d z$, where C is the helix $\vec{r}(t)=(\cos t) \vec{i}+(\sin t) \vec{j}+t \vec{k}, 0 \leq t \leq 2 \pi$. (Hass Sec 16.2 Ex 3)

Exercise 5. Evaluate $\int_{C} y \sin z d s$, where C is circular helix given by the equations $x=\cos t, y=\sin t, z=t, 0 \leq t \leq 2 \pi$. (Stew Sec 16.2 Ex 5)

Exercise 6. Evaluate $\int_{C} y z d x+x z d y+x y d z$ if C is given by

$$
x=t, y=t^{2}, z=t^{3} ; 0 \leq t \leq 2 .(\text { Swok Sec 18.2 Ex } 5)
$$

Class Exercise 3. Evaluate the line integral, where C is the given curve. ($\# 10-16$ even)
(a) $\int_{C} x y z^{2} d s, C$ is the line segment from $(-1,5,0)$ to $(1,6,4)$
(b) $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s, C: x=t, y=\cos 2 t, z=\sin 2 t, 0 \leq t \leq 2 \pi$
(c) $\int_{C} y d x+z d y+x d z, C: x=\sqrt{t}, y=t^{2}, z=t^{3}, 1 \leq t \leq 4$
(d) $\int_{C}(y+z) d x+(x+z) d y+(x+y) d z, C$ consists of line segments from $(0,0,0)$ to $(1,0,1)$ and from $(1,0,1)$ to $(0,1,2)$.
Definition: The work W done by the force field \vec{F} is the limit of Riemann sums:

$$
W=\int_{C} \vec{F}(x, y, z) \cdot \vec{T}(x, y, z) d s=\int_{C} \vec{F} \cdot \vec{T} d s
$$

Here is the computational formula: $W=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t$.
Definition: Let \vec{F} be a continuous vector field defined on a smooth curve C given by a vector function $\vec{r}(t), a \leq t \leq b$. Then, the line integral of \vec{F} along C is

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{c} \vec{F} \cdot \vec{T} d s
$$

Exercise 7. Evaluate $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}(x, y, z)=z \vec{i}+x y \vec{j}-y^{2} \vec{k}$ along the curve C given by $\vec{r}(t)=t^{2} \vec{i}+t \vec{j}+\sqrt{t} \vec{k}, 0 \leq t \leq 1$. (Hass Sec 16.2 Ex 2)

Class Exercise 4. Evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$, where C is given by the vector function $\vec{r}(t)$. (\#20,22)
(a) $\vec{F}(x, y, z)=(x+y) \vec{i}+(y-z) \vec{j}+z^{2} \vec{k}, \vec{r}(t)=t^{2} \vec{i}+t^{3} \vec{j}+t^{2} \vec{k}, 0 \leq t \leq 1$
(b) $\vec{F}(x, y, z)=x \vec{i}+y \vec{j}+x y \vec{k}, \vec{r}(t)=\cos t \vec{i}+\sin t \vec{j}+t \vec{k}, 0 \leq t \leq \pi$

Exercise 8. Find the work done by the force field $\vec{F}=\left(y-x^{2}\right) \vec{i}+\left(z-y^{2}\right) \vec{j}+\left(x-z^{2}\right) \vec{k}$ along the curve $\vec{r}(t)=t \vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, 0 \leq t \leq 1$, from $(0,0,0)$ to (1,1,1). (Hass Sec 16.2 Ex 4)

Exercise 9. Find the work done by the force field $\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}$ in moving an object along the curve C parametrized by $\vec{r}(t)=\cos (\pi t) \vec{i}+t^{2} \vec{j}+\sin (\pi t) \vec{k}, 0 \leq t \leq 1$.
(Hass Sec 16.2 Ex 5)
Class Exercise 5. Find the work done by the force field $\vec{F}(x, y)=x^{2} \vec{i}+y e^{x} \vec{j}$ on a particle that moves along the parabola $x=y^{2}+1$ from $(1,0)$ to $(2,1)$. (\#40)

Class Exercise 6. The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\vec{r}=\langle x, y, z\rangle$ is $\vec{F}(\vec{r})=K \vec{r} /|\vec{r}|^{3}$ where K is a constant. Find the work done as the particle moves from a straight line from $(2,0,0)$ to $(2,1,5)$. (\#42)

Connection Between Line Integrals of Vector Fields and Line Integrals of Scalar Fields:

$$
\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z \text {, where } \vec{F}=P \vec{i}+Q \vec{j}+R \vec{k} \text {. }
$$

Homework: 1-13 ODD, 17-27 ODD, 35

