Section 16.3

Definition: A curve is called closed if its terminal point coincides with its initial point, that is, $\vec{r}(a)=\vec{r}(b)$.

Definition: D is open if for every point P in D there is a disk with center P that lies entirely in D.
Definition: D is connected if any two points in D can be joined by a path that lies in D.
Definition: A simple curve is a curve that doesn't intersect itself anywhere between its endpoints.

Definition: A simply-connected region in the plane is a connected region D such that every simple closed curve in D encloses only points that are in D.

Class Exercise 1. Determine whether or not the given set is (a) open, (b) connected, and (c) simply-connected. $(\# 32,34)$
(i) $\{(x, y)|1<|x|<2\}$
(ii) $\{(x, y) \mid(x, y) \neq(2,3)\}$

Theorem If $\vec{F}(x, y)=P(x, y) \vec{i}+Q(x, y) \vec{j}$ is a conservative vector field, where P and Q have continuous first-order partial derivatives on a domain D, then throughout D we have

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}
$$

Theorem: Let $\vec{F}=P \vec{i}+Q \vec{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order partial derivatives and

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \text { throughout } D
$$

Then \vec{F} is conservative.
Exercise 1. Determine whether the following vector field is conservative on \mathbb{R}^{2} : $\vec{F}=<e^{x} \cos y,-e^{x} \sin y>$. (Briggs Sec 14.3 Ex 1)

Exercise 2. If $\vec{F}(x, y)=(3+2 x y) \vec{i}+\left(x^{2}-3 y^{2}\right) \vec{j}$, find a function f such that $\vec{F}=\nabla f$. (Stew Sec 16.3 Ex 4)

Class Exercise 2. Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F}=\nabla f$. (\#4-10 even)
(a) $\vec{F}(x, y)=e^{x} \sin y \vec{i}+e^{x} \cos y \vec{j}$
(b) $\vec{F}(x, y)=\left(3 x^{2}-2 y^{2}\right) \vec{i}+(4 x y+3) \vec{j}$
(c) $\vec{F}(x, y)=\left(2 x y+y^{-2}\right) \vec{i}+\left(x^{2}-2 x y^{-3}\right) \vec{j}, y>0$
(d) $\vec{F}(x, y)=(x y \cosh x y+\sinh x y) \vec{i}+\left(x^{2} \cosh x y\right) \vec{j}$

Definition: In general, if \vec{F} is a continuous vector field with domain D, we say that the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path if $\int_{C_{1}} \vec{F} \cdot d \vec{r}=\int_{C_{2}} \vec{F} \cdot d \vec{r}$ for any two paths C_{1} and C_{2} in D that have the same initial points and the same terminal points.

Theorem: $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path in D if and only if $\int_{C} \vec{F} \cdot d \vec{r}=0$ for every closed path C in D.

Theorem: If $\vec{F}(x, y)=M(x, y) \vec{i}+N(x, y) \vec{j}$ is continuous on an open connected region D, then the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ is independent of path if and only if \vec{F} is conservative; that is, $\vec{F}(x, y)=\nabla f(x, y)$ for some scalar function f.

Exercise 3. Show that the line integral

$$
\int_{C}\left(e^{3 y}-y^{2} \sin x\right) d x+\left(3 x e^{3 y}+2 y \cos x\right) d y
$$

is independent of path in a simply connected region. (Swok Sec 18.3 Ex 3)

Exercise 4. Let $\vec{F}(x, y, z)=y^{2} \cos x \vec{i}+\left(2 y \sin x+e^{2 z}\right) \vec{j}+2 y e^{2 z} \vec{k}$. Find the potential function f for \vec{F}. (Swok Sec 18.3 Ex 5)

Fundamental Theorem of Line Integrals: Let C be a smooth curve given by the vector function $\vec{r}(t), a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$
\int_{C} \nabla f \cdot d \vec{r}=f(\vec{r}(b))-f(\vec{r}(a)) .
$$

Exercise 5. Let $\vec{F}(x, y, z)=y^{2} \cos x \vec{i}+\left(2 y \sin x+e^{2 z}\right) \vec{j}+2 y e^{2 z} \vec{k}$. If \vec{F} is a force field, find the work done by \vec{F} along any curve C from $\left(0,1, \frac{1}{2}\right)$ to $(\pi / 2,3,2)$. (Swok Sec 18.3 Ex 5)

Class Exercise 3. (a) Find a function f such that $\vec{F}=\nabla f$ and (b) use part (a) to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the given curve C. (\#12-18 even)
(i) $\vec{F}(x, y)=x^{2} \vec{i}+y^{2} \vec{j}, C$ is the arc of the parabola $y=2 x^{2}$ from $(-1,2)$ to $(2,8)$
(ii) $\vec{F}(x, y)=(1+x y) e^{x y} \vec{i}+x^{2} e^{x y} \vec{j}, C: \vec{r}(t)=\cos t \vec{i}+2 \sin t \vec{j}, 0 \leq t \leq \pi / 2$
(iii) $\vec{F}(x, y, z)=\left(y^{2} z+2 x z^{2}\right) \vec{i}+2 x y z \vec{j}+\left(x y^{2}+2 x^{2} z\right) \vec{k}$,
$C: x=\sqrt{t}, y=t+1, z=t^{2}, 0 \leq t \leq 1$
(iv) $\vec{F}(x, y, z)=\sin y \vec{i}+(x \cos y+\cos z) \vec{j}-y \sin z \vec{k}$,
$C: \vec{r}(t)=\sin t \vec{i}+t \vec{j}+2 t \vec{k}, 0 \leq t \leq \pi / 2$

Class Exercise 4. Show that the line integral is independent of path and evaluate the integral.

$$
\int_{C} \sin y d x+(x \cos y-\sin y) d y
$$

C is any path from $(2,0)$ to $(1, \pi)$. (\#20)

Class Exercise 5. Find the work done by the force field \vec{F} in moving an object from P to Q. (\#24)

$$
\vec{F}(x, y)=e^{-y} \vec{i}-x e^{-y} \vec{j} ; P(0,1), Q(2,0)
$$

Homework: 3-11 (every 4th), 17-29 (every 4th), 31, 35-39 ODD

