Section 16.4

Definition: The positive orientation of a simple closed curve C refers to a single counterclockwise traversal of \bar{C}.

Notation: The notation

$$
\oint P d x+Q d y
$$

is sometimes used to indicate that the line integral is calculated using the positive orientation of the closed curve C.

Green's Theorem: Let C be a positively oriented, piecewise-smooth, simple closed curve in the plane and let D be the region bounded by C. If P and Q have continuous partial derivatives on an open region that contains D, then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A .
$$

Exercise 1. Use Green's Theorem to evaluate $\oint_{C} 5 x y d x+x^{3} d y$, where C is the closed curve consisting of the graphs of $y=x^{2}$ and $y=2 x$ between the points $(0,0)$ and $(2,4)$. (Swok Sec 18.4 Ex 1)

Exercise 2. Use Green's Theorem to evaluate the line integral

$$
\oint_{C} 2 x y d x+\left(x^{2}+y^{2}\right) d y
$$

if C is the ellipse $4 x^{2}+9 y^{2}=36$. (Swok Sec 18.4 Ex 2)
Exercise 3. Evaluate $\oint_{C}\left(4+e^{\sqrt{x}}\right) d x+\left(\sin y+3 x^{2}\right) d y$ if C is the boundary of the region R between quarter-circles of radii a and b and segments on the $x-$ and y - axes. (Swok Sec 18.4 Ex 3)

Class Exercise 1. Evaluate the line integral by two methods: (a) directly and (b) using Green's Theorem. (\#2,4)
(i) $\oint x y d x+x^{2} d y$, where C is the rectangle with vertices $(0,0),(3,0),(3,1)$, and $(0,1)$.
(ii) $\oint x^{2} y^{2} d x+x y d y, C$ consists of the arc of the parabola $y=x^{2}$ from $(0,0)$ to $(1,1)$ and the line segments from $(1,1)$ to $(0,1)$ and from $(0,1)$ to $(0,0)$

Class Exercise 2. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $(\# 6,8,10)$
(a) $\int_{C} \cos y d x+x^{2} \sin y d y, C$ is the rectangle with vertices $(0,0),(5,0),(5,2),(0,2)$
(b) $\int_{C} y^{4} d x+2 x y^{3} d y, C$ is the ellipse $x^{2}+2 y^{2}=2$
(c) $\int_{C}\left(1-y^{3}\right) d x+\left(x^{3}+e^{y^{2}}\right) d y, C$ is the boundary of the region between the circles $x^{2}+y^{2}=4$ and $x^{2}+y^{2}=9$
Extension of Green's Theorem: Green's Theorem can be extended to apply to regions with holes. That boundary would then consist of two simple closed curves. Let's call one simple closed curve C_{1} and the other simple closed curve C_{2}. We assume that these boundary curves are oriented so that the region is always on the left as the curve C is traversed. Thus the positive direction is counterclockwise for the outer curve C_{1} but clockwise for the inner curve C_{2}.
Exercise 4. If \vec{F} is defined by $\vec{F}(x, y)=(-y i+x \vec{j}) /\left(x^{2}+y^{2}\right)$, show that $\oint_{C} \vec{F} \cdot d \vec{r}=2 \pi$ for every positively oriented simple closed path that encloses the origin. (Stew Sec 16.4 Ex 5)

Class Exercise 3. Use Green's Theorem to evaluate $\int \vec{F} \cdot d \vec{r} \cdot(\# 12,14)$
(a) $\vec{F}(x, y)=<e^{-x}+y^{2}, e^{-y}+x^{2}>, C$ consists of the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$
(b) $\vec{F}(x, y)=<\sqrt{x^{2}+1}, \tan ^{-1} x>, C$ is the triangle from $(0,0)$ to $(1,1)$ to $(0,1)$ to $(0,0)$

Definition: A region is a simple region if it is both type I and type II.

Formula for the area of D

$$
A=\oint x d y=-\oint y d x=\frac{1}{2} \oint x d y-y d x
$$

Exercise 5. Find the area enclosed by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. (Stew Sec 16.4 Ex 3)
Homework: 1, 3, 5, 11, 15, 19, 23, 25

